Background light adaptation of the retinal neuronal adaptive system. I. Effect of background light intensity. 2001

L Wang, and M el Azazi, and A Eklund, and W Lillemor
Department of Clinical Sciences, Ophthalmology, UmeƄ University, Sweden.

The behaviour of the neuronal adaptive retinal mechanisms to environmental light exposures was studied by measuring the oscillatory potentials (OPs) of the electroretinogram. Dark adapted rats were exposed to four levels of background light (BG), starting at a 'low scotopic' level of 1.43x 10(6) cd/m2, increased by steps of two log units, through 'high scotopic' -, 'low mesopic' - and finally the 'high mesopic' BG of 1.43x 10(0) cd/m2. The summed oscillatory response significantly increased as the BG intensity was raised, except at the 'high mesopic' level. The amplitudes of the a- and b-waves reduced as the BG light increased above the 'high scotopic' level. Each OP responded individually to the different BGs. O1 and O2, significantly enhanced at the 'low scotopic' BG. The amplitudes of the three later OPs increased significantly at the 'low mesopic' BG. The adaptational behaviour of the retinal oscillatory response to BG illumination was different to that of the a- and b- waves. The results indicate that the adaptational neuronal system, as reflected by the OPs, seems to be relatively robust and is separate from the slower photochemical adaptive process in the distal retina. The tentative corollary suggests the oscillatory system to play a vision-preserving role, possibly as an alert against undue depletion of the slowly regenerating visual pigment. The enhancement of the oscillatory response at the 'mesopic' illumination levels indicate both scotopic and photopic processes to contribute to neuronal adaptive activity of the retina.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009991 Oscillometry The measurement of frequency or oscillation changes. Oscillometries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D004596 Electroretinography Recording of electric potentials in the retina after stimulation by light. Electroretinographies
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L Wang, and M el Azazi, and A Eklund, and W Lillemor
September 1971, Vision research,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
January 1976, Vision research,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
July 1993, Klinische Monatsblatter fur Augenheilkunde,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
February 1970, The British journal of ophthalmology,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
January 1954, Zeitschrift fur Biologie,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
January 1956, Comptes rendus des seances de la Societe de biologie et de ses filiales,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
December 1998, Yan ke xue bao = Eye science,
L Wang, and M el Azazi, and A Eklund, and W Lillemor
January 1963, Acta ophthalmologica. Supplementum,
Copied contents to your clipboard!