Ultrastructure of cytoplasmic and nuclear changes in Eimeria tenella during first-generation schizogony in cell culture. 1975

N D Pacheco, and J M Vetterling, and D J Doran

Eimeria tenella sporozoites were inoculated into primary cultures of chick kidney cells. Cells fixed from 1 1/2 to 54 hr later were examined with the electron microscope. At 1 1/2 and 24 hr, most intracellular sporozoites were fusiform and retained organelles typical of extracellular sporozoites. However, at 35 hr, rounded trophozoites were present without these structures; only a refractile body, nucleus, mitochondria, and endoplasmic reticulum remained. Binucleate parasites were also present at that time, but at 48 hr many multinucleate schizonts were present. Nuclei, with adjacent conoids, were at the periphery of these schizonts. Partly developed merozoites, each containing a conoid and a nucleus, protruded into the parasitophorous vacuole. At 54 hr, fully developed merozoites were separated from the residual body. Merozoites resembled sporozoites but lacked the large refractile bodies seen in sporozoites. Linear inclusions were present near the merozoite nucleus and in the residual body. Round vacuoles and ribosomes were also found in the residuum. Nucleoli were first seen in sporozoite nuclei at 1 1/2 hr. They were also present in merozoites but were more prominent in trophozoites and schizonts. Peripheral and scattered nuclear heterochromatins were prominent in intracellular sporozoites and diminished in trophozoites, but increased after several nuclear divisions and were again prominent in the merozoite. Small, distinct interchromatin granules were found in all stages. Intranuclear spindles, centrocones, and centrioles were found in connection with nuclear divisions. Ultrastructure of first-generation schizogony in cell culture was similar to that described for second-generation E. tenella in the chicken and to schizogony of other species of Eimeria.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004539 Eimeria A genus of protozoan parasites of the subclass COCCIDIA. Various species are parasitic in the epithelial cells of the liver and intestines of man and other animals. Eimerias

Related Publications

N D Pacheco, and J M Vetterling, and D J Doran
August 1986, Parasitology,
N D Pacheco, and J M Vetterling, and D J Doran
May 1970, American journal of veterinary research,
N D Pacheco, and J M Vetterling, and D J Doran
August 1978, The Journal of protozoology,
N D Pacheco, and J M Vetterling, and D J Doran
October 1998, The Journal of parasitology,
N D Pacheco, and J M Vetterling, and D J Doran
January 1970, Zeitschrift fur Parasitenkunde (Berlin, Germany),
N D Pacheco, and J M Vetterling, and D J Doran
August 1969, Parasitology,
N D Pacheco, and J M Vetterling, and D J Doran
February 1971, The Journal of protozoology,
N D Pacheco, and J M Vetterling, and D J Doran
August 1969, Experimental parasitology,
N D Pacheco, and J M Vetterling, and D J Doran
June 1987, The Journal of parasitology,
N D Pacheco, and J M Vetterling, and D J Doran
January 1970, Nature,
Copied contents to your clipboard!