Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges. 1975

G D'Alessio, and M C Malorni, and A Parente

The hypothesis previously advanced that interchain disulfide bridges link the two identical subunits of bovine seminal ribonuclease BS-1 has been confirmed. The sedimentation rate and the electrophoretic mobility of the protein are not affected by denaturing agents unless thiol reagents are present in the denaturation mixtures. Reduction under controlled conditions results in the immediate cleavage of only 2 disulfide bonds out of 10 percent in the dimeric protein. Under these conditions, and the results do not change when partial reduction is followed by S-alkylation, 30% of the protein dissociates, while the remaining is found to consist of a dimeric species easily dissociable by denaturing agents without addition of thiol reagents. This indicates that the dimeric structure of seminal ribonuclease is maintained not only by disulfide bridges, but also by noncovalent forces. The protein derivative prepared by selective reduction and alkylation has been identified as monomeric bis-S-carboxymethylcysteine-31,32-ribonuclease BS-1. This is on the basis of the characterization of the 14C-labeled S-carboxymethylated peptides isolated from a thermolytic hydrolysate of the derivative prepared with iodo-2-[14C]acetic acid. Monomeric, selectively alkylated ribonuclease BS-1 is stable and catalytically active. The importance of such a derivative is discussed both in the light of the recent studies on the biological actions of seminal ribonuclease and as the fourth component of an experimental system of ribonucleases consisting of two homologous dimers (bovine seminal ribonuclease BS-1 and dimerized bovine pancreatic ribonuclease A) and two homologous monomers (ribonuclease A and the monomeric derivative of ribonuclease BS-1.

UI MeSH Term Description Entries
D008297 Male Males
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations

Related Publications

G D'Alessio, and M C Malorni, and A Parente
August 1979, Biochimica et biophysica acta,
G D'Alessio, and M C Malorni, and A Parente
August 1979, Archives of biochemistry and biophysics,
G D'Alessio, and M C Malorni, and A Parente
December 2002, The Journal of biological chemistry,
G D'Alessio, and M C Malorni, and A Parente
January 1975, International journal of peptide and protein research,
G D'Alessio, and M C Malorni, and A Parente
June 1986, European journal of biochemistry,
G D'Alessio, and M C Malorni, and A Parente
May 1996, Proceedings of the National Academy of Sciences of the United States of America,
G D'Alessio, and M C Malorni, and A Parente
October 1993, Protein science : a publication of the Protein Society,
G D'Alessio, and M C Malorni, and A Parente
June 1971, Biochemistry,
G D'Alessio, and M C Malorni, and A Parente
March 1970, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!