Activated SRC oncogene phosphorylates R-ras and suppresses integrin activity. 2002

June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA.

One of the prominent effects of the Src kinase is to reduce cell adhesion. The small GTPase, R-Ras, affects cell adhesion by maintaining integrin activity, and the ability of R-Ras to do so can be regulated by phosphorylation of a tyrosine residue located in its effector domain by an Eph receptor kinase (Zou, J. X., Wang, B., Kalo, M. S., Zisch, A. H., Pasquale, E. B., and Ruoslahti, E. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13813-13818). Here we show that Src regulates cell adhesion through R-Ras and integrins. Reduced substrate attachment of 293T cells transfected with the cDNA for an activated form of Src (v-Src) was accompanied by phosphorylation of endogenous R-Ras. v-Src also phosphorylated R-Ras in vitro. An activated form of Src similar to one that has been found in human cancers, Src527, shared with v-Src the ability to phosphorylate R-Ras. Stronger R-Ras phosphorylation was seen in Madin-Darby canine kidney cells cells transformed with temperature-sensitive v-Src at the permissive temperature than at the non-permissive temperature, and R-Ras and Src co-immunoprecipitated at the permissive temperature. Mutation analysis showed that the Src phosphorylation site in R-Ras was tyrosine 66, the position critical to the ability of R-Ras to support integrin activity. Finally, activated R-Ras in which tyrosine 66 is mutated to phenylalanine rendered cells partially resistant to the effects of Src on cell adhesion. Regulation of cell adhesion by Src through R-Ras may be at least partially responsible for the reduced adhesion and the resulting increased invasiveness of Src-transformed cells.

UI MeSH Term Description Entries
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin
D016391 Genes, src Retrovirus-associated DNA sequences (src) originally isolated from the Rous sarcoma virus (RSV). The proto-oncogene src (c-src) codes for a protein that is a member of the tyrosine kinase family and was the first proto-oncogene identified in the human genome. The human c-src gene is located at 20q12-13 on the long arm of chromosome 20. c-src Genes,src Genes,v-src Genes,c-src Proto-Oncogenes,src Gene,src Oncogene,v-src Oncogenes,Gene, c-src,Gene, src,Gene, v-src,Genes, c-src,Genes, v-src,Oncogene, src,Oncogene, v-src,Oncogenes, src,Oncogenes, v-src,Proto-Oncogene, c-src,Proto-Oncogenes, c-src,c src Genes,c src Proto Oncogenes,c-src Gene,c-src Proto-Oncogene,src Oncogenes,v src Genes,v src Oncogenes,v-src Gene,v-src Oncogene
D018631 ras Proteins Small, monomeric GTP-binding proteins encoded by ras genes (GENES, RAS). The protooncogene-derived protein, PROTO-ONCOGENE PROTEIN P21(RAS), plays a role in normal cellular growth, differentiation and development. The oncogene-derived protein ONCOGENE PROTEIN P21(RAS) can play a role in aberrant cellular regulation during neoplastic cell transformation (CELL TRANSFORMATION, NEOPLASTIC). This enzyme was formerly listed as EC 3.6.1.47. Gene Products, ras,ras GTPase,ras Protein,ras GTPases,GTPase, ras,GTPases, ras,Protein, ras,ras Gene Products
D020558 GTP Phosphohydrolases Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-. GTPase,GTPases,Guanosine Triphosphate Phosphohydrolases,Guanosinetriphosphatases,GTP Phosphohydrolase,Phosphohydrolase, GTP,Phosphohydrolases, GTP,Phosphohydrolases, Guanosine Triphosphate,Triphosphate Phosphohydrolases, Guanosine

Related Publications

June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
November 1999, Proceedings of the National Academy of Sciences of the United States of America,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
April 1996, Cell,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
September 1989, Experimental cell research,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
June 2000, Current biology : CB,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
January 2001, Methods in enzymology,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
June 2023, JCI insight,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
January 1987, The Prostate,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
September 1996, Oncogene,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
April 2011, Molecular cell,
June X Zou, and Yanqiu Liu, and Elena B Pasquale, and Erkki Ruoslahti
July 2000, The Journal of biological chemistry,
Copied contents to your clipboard!