Rho GTPases and cell migration. 2001

A J Ridley
Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, UK. anne@ludwig.ucl.ac.uk

Cell migration involves dynamic and spatially regulated changes to the cytoskeleton and cell adhesion. The Rho GTPases play key roles in coordinating the cellular responses required for cell migration. Recent research has revealed new molecular links between Rho family proteins and the actin cytoskeleton, showing that they act to regulate actin polymerization, depolymerization and the activity of actin-associated myosins. In addition, studies on integrin signalling suggest that the substratum continuously feeds signals to Rho proteins in migrating cells to influence migration rate. There is also increasing evidence that Rho proteins affect the organization of the microtubule and intermediate filament networks and that this is important for cell migration.

UI MeSH Term Description Entries
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D020741 rho GTP-Binding Proteins A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47. rho G-Proteins,rho GTPase,rho GTPases,rho Small GTP-Binding Proteins,P21 (rho)Protein,rho GTP-Binding Protein,rho Protein P21,G-Proteins, rho,GTP-Binding Protein, rho,GTP-Binding Proteins, rho,GTPase, rho,GTPases, rho,P21, rho Protein,rho G Proteins,rho GTP Binding Protein,rho GTP Binding Proteins,rho Small GTP Binding Proteins

Related Publications

A J Ridley
January 2014, Small GTPases,
A J Ridley
January 2014, Small GTPases,
A J Ridley
January 2012, Small GTPases,
A J Ridley
January 2004, Developmental biology,
A J Ridley
January 2000, Methods in enzymology,
A J Ridley
April 2010, Journal of molecular cell biology,
A J Ridley
January 2011, Methods in molecular biology (Clifton, N.J.),
A J Ridley
December 2014, British journal of pharmacology,
A J Ridley
November 2000, Experimental cell research,
Copied contents to your clipboard!