Generation of recombinant human C3dg tetramers for the analysis of CD21 binding and function. 2001

S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
The Harold C. Simmons Arthritis Research Center and the Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA.

CD21 (complement receptor 2, CR2) binds the terminal proteolytic fragments of the third component of complement (C3) that have been covalently attached to immune complexes or other targets during the activation of complement. We used the technique of in vivo biotinylation to create a recombinant multivalent ligand for CD21. A sequence coding for a biotinylation signal peptide was added to the 3' end of the human C3dg cDNA. The modified C3dg was expressed in Escherichia coli and biotinylated intracellularly by the bacterial biotin holoenzyme synthetase (BirA) enzyme. Monomeric C3dg was unable to bind to CD21 as determined by flow cytometry, while biotinylated recombinant C3dg (rC3dg) complexed with fluorochrome-conjugated streptavidin bound tightly. Binding was observed using CD21 positive B cells but not seen on pre-B cells that do not express this complement receptor. Two assays were used to assess the functional capacity of the recombinant C3dg. First, multimeric C3dg caused the phosphorylation of the mitogen-activated kinase, p38, in mature B lymphoma cells. Second, C3dg greatly enhanced the activation of primary B cells in combination with a sub-stimulatory concentration of anti-IgM monoclonal antibody. These results illustrate the utility of the technique of in vivo biotinylation to generate ligands for cell surface receptors that require multimerization for high avidity binding and function.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent

Related Publications

S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
December 1996, Immunology letters,
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
February 1991, Journal of immunology (Baltimore, Md. : 1950),
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
November 1994, Journal of immunology (Baltimore, Md. : 1950),
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
June 1987, Biochemistry,
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
July 1996, European journal of immunology,
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
November 1998, Journal of immunology (Baltimore, Md. : 1950),
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
August 2002, Proceedings of the National Academy of Sciences of the United States of America,
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
April 2000, Blood,
S E Henson, and D Smith, and S A Boackle, and V M Holers, and D R Karp
December 1989, The Journal of biological chemistry,
Copied contents to your clipboard!