Bioactivation and toxicity in vitro of HCFC-123 and HCFC-141b: role of cytochrome P450. 2001

A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
Institute of Occupational Medicine, University of Padua, Via Facciolati, 71, 35128 Padua, Italy.

The bioactivation and cytotoxicity in vitro of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) and 1,1-dichloro-1-fluoroethane (HCFC-141b), two replacements for some ozone-depleting chlorofluorocarbons (CFC), were investigated in rat liver microsomes and isolated rat hepatocytes. Both compounds were activated by cytochrome P450 to reactive metabolites, as indicated by: (i) the depletion of exogenous and cellular glutathione, (ii) the increased LDH release from hepatocytes, (iii) the loss of microsomal P450 content and activities, and (iv) the formation of free radical species observed in the presence of the two compounds. Moreover, the formation of two stable metabolites and an increased production of conjugated dienes, a marker of lipid peroxidation, were observed for both HCFC-123 and HCFC-141b. The biotransformation of both compounds by pyridine- and phenobarbital-induced rat liver microsomes and the inhibition of LDH release by 4-methylpyrazole and troleandomycin indicate that P450 2E1, 2B and, possibly, also 3A are the isoforms involved in the bioactivation and toxicity of HCFC-123 and HCFC-141b in the rat.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.

Related Publications

A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
June 1995, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
April 1996, Xenobiotica; the fate of foreign compounds in biological systems,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
August 1994, Fundamental and applied toxicology : official journal of the Society of Toxicology,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
November 2016, Chemical research in toxicology,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
June 1995, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
May 2004, Current cancer drug targets,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
July 2006, Journal of chemical ecology,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
December 1995, Xenobiotica; the fate of foreign compounds in biological systems,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
August 2020, Chemical research in toxicology,
A Zanovello, and R Ferrara, and R Tolando, and S Bortolato, and I N White, and M Manno
January 2011, Biochimica et biophysica acta,
Copied contents to your clipboard!