Acetylcholinesterase-catalyzed hydrolysis of an amide. 1975

D E Moore, and G P Hess

In this paper we report that acetylcholinesterase catalyzes hydrolysis of amides, an observation which had not been made previously. The amide used is an analog of acetylcholine, 2-acetoaminoethyltrimethylammonium iodide. The experiments were performed with an enzyme preparation obtained from electroplax of Electrophorus electricus. Inhibition of the enzyme by a specific organic phosphate inhibitor abolished both the esterase and the amidase activity of the enzyme. The effect of hydrogen ions between pH 5 and pH 10 on the steady-state kinetic parameters, Km and kcat, has been investigated. These parameters show essentially the same dependence on pH as is observed in catalytic hydrolysis of acetylcholine. k-cat is controlled by an ionizing group of the enzyme with an apparent pK of approximately 6.3, and reaches a pH-independent maximum value of 3.6 sec- minus 1 above pH 8. The value for Km of 1 mM at pH 7 and 25 degrees is about five times greater than that for catalytic hydrolysis of the ester at the same pH and temperature. Preliminary electrophysiological experiments indicate that the amide analog binds to the receptor less well, by several orders of magnitude, than acetylcholine does.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004593 Electrophorus A genus of fish, in the family GYMNOTIFORMES, capable of producing an electric shock that immobilizes fish and other prey. The species Electrophorus electricus is also known as the electric eel, though it is not a true eel. Eel, Electric,Electric Eel,Electrophorus electricus
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000081 Acetamides Derivatives of acetamide that are used as solvents, as mild irritants, and in organic synthesis.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D E Moore, and G P Hess
February 2016, Journal of the American Chemical Society,
D E Moore, and G P Hess
January 1994, Applied biochemistry and biotechnology,
D E Moore, and G P Hess
January 1973, Biochemistry,
D E Moore, and G P Hess
January 1972, Journal of the American Chemical Society,
D E Moore, and G P Hess
October 1969, The Journal of biological chemistry,
D E Moore, and G P Hess
July 1967, Biochemical and biophysical research communications,
D E Moore, and G P Hess
August 1999, Journal of molecular biology,
D E Moore, and G P Hess
March 1975, Canadian journal of biochemistry,
Copied contents to your clipboard!