Expression and regulation of Fas and Fas ligand on thyrocytes and infiltrating cells during induction and resolution of granulomatous experimental autoimmune thyroiditis. 2001

Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.

Granulomatous experimental autoimmune thyroiditis (G-EAT) is induced by mouse thyroglobulin-sensitized spleen cells activated in vitro with mouse thyroglobulin, anti-IL-2R, and IL-12. G-EAT lesions reach maximal severity 19-21 days after cell transfer, and lesions almost completely resolve by day 35. Depletion of CD8+ cells delays resolution and reduces Fas ligand (FasL) mRNA expression in thyroids. This study was undertaken to analyze Fas and FasL protein expression in the thyroid during induction and resolution of G-EAT and to determine whether CD8+ cells might regulate Fas or FasL expression in the thyroid. Fas and FasL expression was analyzed by immunohistochemical staining or in situ hybridization in thyroids of mice with or without depletion of CD8+ cells. Fas and FasL proteins were not detectable in normal thyroids, but expression of both proteins increased during development of G-EAT. Fas was expressed primarily by inflammatory cells; some enlarged thyrocytes were also Fas+. Thyrocytes had intense FasL immunoreactvity, and many CD8+ cells were also FasL positive. Depletion of CD8+ cells resulted in decreased FasL expression by thyrocytes and inflammatory cells, but had no effect on Fas expression. TUNEL assay detected many apoptotic inflammatory cells in proximity to thyrocytes. CD8-depleted thyroids had ongoing inflammation with fewer apoptotic infiltrating cells at day 35. Administration of a neutralizing anti-FasL mAb had no apparent effects on development of G-EAT, but anti-FasL was as effective as anti-CD8 in preventing G-EAT resolution. These results suggested that CD8+ T cells and thyrocytes may kill inflammatory cells through the Fas pathway, contributing to G-EAT resolution.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008212 Lymphocyte Depletion Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation. Depletion, Lymphocyte
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005260 Female Females
D006099 Granuloma A relatively small nodular inflammatory lesion containing grouped mononuclear phagocytes, caused by infectious and noninfectious agents. Granulomas

Related Publications

Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
February 1994, Cellular immunology,
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
February 2000, Journal of immunology (Baltimore, Md. : 1950),
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
June 2006, Clinical and experimental immunology,
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
June 2008, The American journal of pathology,
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
November 1999, European journal of endocrinology,
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
December 2008, The Journal of pathology,
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
January 1998, Journal of immunology (Baltimore, Md. : 1950),
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
November 2000, Journal of immunology (Baltimore, Md. : 1950),
Y Wei, and K Chen, and G C Sharp, and H Yagita, and H Braley-Mullen
January 1994, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!