Lentivirus and foamy virus vectors: novel gene therapy tools. 2001

S Pandya, and E Klimatcheva, and V Planelles
Departments of Medicine and Microbiology and Immunology, University of Rochester Cancer Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.

The aim of gene therapy is to modify the genetic material of living cells to achieve therapeutic benefit. Gene therapy involves the insertion of a functional gene into a cell, to replace an absent or defective gene, or to fight an infectious agent or a tumour. At present, a wide variety of somatic tissues are being explored for the introduction of foreign genes with a view towards treatment. A prime requirement for successful gene therapy is the sustained expression of the therapeutic gene without any adverse effect on the recipient. A highly desirable vector would be generated at high titres, integrate into target cells (including non-dividing cells) and have little or no associated immune reactions. Lentiviruses have the ability to infect dividing and non-dividing cells and, therefore, constitute ideal candidates for development of vectors for gene therapy. This review presents a description of available lentiviral vectors, including vector design, applications to disease treatment and safety considerations. In addition, general aspects of the biology of lentiviruses with relevance to vector development will be discussed. Recent investigations have revealed that foamy viruses, another group of retroviruses, are also capable of infecting non-dividing cells. Thus, foamy virus vectors are actively being developed in parallel to lentivirus vectors. This review will also include various aspects of the biology of foamy viruses with relevance to vector development.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D016086 Lentivirus A genus of the family RETROVIRIDAE consisting of non-oncogenic retroviruses that produce multi-organ diseases characterized by long incubation periods and persistent infection. Lentiviruses are unique in that they contain open reading frames (ORFs) between the pol and env genes and in the 3' env region. Five serogroups are recognized, reflecting the mammalian hosts with which they are associated. HIV-1 is the type species. Lentivirinae,Lentiviruses
D016092 Spumavirus Genus of non-oncogenic retroviruses which establish persistent infections in many animal species but are considered non-pathogenic. Its species have been isolated from primates (including humans), cattle, cats, hamsters, horses, and sea lions. Spumaviruses have a foamy or lace-like appearance and are often accompanied by syncytium formation. SIMIAN FOAMY VIRUS is the type species. African green monkey simian foamy virus,Bovine Syncytial Virus,Bovine foamy virus,Feline Syncytium-Forming Virus,Feline foamy virus,Foamy Virus,Macaque simian foamy virus,Simian foamy virus 1,Simian foamy virus 3,Spumavirinae,Spumaviruses,Bovine Syncytial Viruses,Bovine foamy viruses,Feline Syncytium Forming Virus,Feline Syncytium-Forming Viruses,Feline foamy viruses,Foamy Viruses,Syncytial Virus, Bovine,Syncytial Viruses, Bovine,Syncytium-Forming Virus, Feline,Syncytium-Forming Viruses, Feline,foamy virus, Bovine,foamy viruses, Bovine,foamy viruses, Feline,virus, Feline foamy,viruses, Bovine foamy,viruses, Feline foamy
D019076 Transgenes Genes that are introduced into an organism using GENE TRANSFER TECHNIQUES. Recombinant Transgenes,Recombinant Transgene,Transgene,Transgene, Recombinant,Transgenes, Recombinant

Related Publications

S Pandya, and E Klimatcheva, and V Planelles
November 1997, Gene therapy,
S Pandya, and E Klimatcheva, and V Planelles
October 2013, Viruses,
S Pandya, and E Klimatcheva, and V Planelles
November 2019, Viruses,
S Pandya, and E Klimatcheva, and V Planelles
January 2002, Methods in enzymology,
S Pandya, and E Klimatcheva, and V Planelles
November 2009, Expert opinion on biological therapy,
S Pandya, and E Klimatcheva, and V Planelles
December 1999, Biochemical Society transactions,
S Pandya, and E Klimatcheva, and V Planelles
January 2003, Current topics in microbiology and immunology,
S Pandya, and E Klimatcheva, and V Planelles
January 1996, Journal of virology,
S Pandya, and E Klimatcheva, and V Planelles
January 2013, The journal of gene medicine,
Copied contents to your clipboard!