Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance. 2001

Z Gu, and Q Jiang, and G Zhang
Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou 221002, PR China.

The alterations and involvement of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) activation were examined in the hippocampal CA1 region in a rat model of global brain ischemic tolerance. Western blotting study showed that ERK activation (diphosphorylation) level was decreased (3.75-, 0.56-, and 0.23-fold vs sham control) and JNK activation level was increased (3.82-, 4.63-, and 5.30-fold vs sham control) 3 days after more severe ischemic insults (6 min, 8 min, and 10 min of ischemia, respectively). These alterations were significantly prevented by pretreatment with preconditioning ischemia, which also provided neuronal protection against ischemic injury. Inhibition of ERK activation after preconditioning ischemia by PD98059, a specific ERK kinase inhibitor, significantly prevented the inhibitory effects of preconditioning ischemia on both JNK activation and ischemic injury. The results suggest that ERK activation after preconditioning ischemia may result in the prevention of JNK activation and thus be involved in the protective responses in ischemic tolerance in hippocampal CA1 region.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D048031 JNK Mitogen-Activated Protein Kinases A subgroup of mitogen-activated protein kinases that activate TRANSCRIPTION FACTOR AP-1 via the phosphorylation of C-JUN PROTEINS. They are components of intracellular signaling pathways that regulate CELL PROLIFERATION; APOPTOSIS; and CELL DIFFERENTIATION. jun N-Terminal Kinase,c-jun Amino-Terminal Kinase,c-jun N-Terminal Kinase,jun-NH2-Terminal Kinase,jun-NH2-Terminal Kinases,Amino-Terminal Kinase, c-jun,JNK Mitogen Activated Protein Kinases,Kinase, jun N-Terminal,N-Terminal Kinase, c-jun,N-Terminal Kinase, jun,c jun Amino Terminal Kinase,c jun N Terminal Kinase,jun N Terminal Kinase,jun NH2 Terminal Kinase,jun NH2 Terminal Kinases

Related Publications

Z Gu, and Q Jiang, and G Zhang
November 2000, American journal of respiratory cell and molecular biology,
Z Gu, and Q Jiang, and G Zhang
December 2016, The British journal of dermatology,
Z Gu, and Q Jiang, and G Zhang
November 2002, Journal of dermatological science,
Copied contents to your clipboard!