Chromaffin cell mitogenesis by neurturin and glial cell line-derived neurotrophic factor. 2001

J F Powers, and K H Schelling, and A S Tischler
Department of Pathology, New England Medical Center and Tufts University School of Medicine, 750 Washington Street, Box 802, Boston, MA 02111, USA. jpowers1@lifespan.org

Neurturin and glial cell line-derived neurotrophic factor are novel mitogens for normal adult rat chromaffin cells in vitro. These neurotrophic factors differ from the previously described adult chromaffin cell mitogens, nerve growth factor and basic fibroblast growth factor, in that their effects are potentiated by depolarization and activation of protein kinase C. Neurturin and glial cell line-derived neurotrophic factor signal via the receptor tyrosine kinase, ret, but may also act independently of ret. Both depolarization and phorbol esters act synergistically with neurturin to up-regulate ret protein expression in chromaffin cell cultures, suggesting a mechanism for potentiation of mitogenesis. However, a direct role for ret in mitogenesis has not been established. Stimulation by neurturin causes increased phosphorylation of extracellular signal-regulated kinases 1 and 2 in cultured chromaffin cells, and mitogenesis is prevented by inhibitors of their phosphorylation. Inhibitors of phosphatidylinositol 3-kinase also prevent mitogenesis. The present findings suggest the hypothesis that neurotrophic factors and neurally derived signals might cooperatively regulate chromaffin cell proliferation in vivo in the rat. In addition, trans-synaptic stimulation might provide a route by which epigenetic factors could influence the development of adrenal medullary hyperplasia in humans with hereditary multiple endocrine neoplasia syndromes 2A and 2B by affecting expression and/or activation of ret.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

J F Powers, and K H Schelling, and A S Tischler
December 1996, Nature,
J F Powers, and K H Schelling, and A S Tischler
April 1998, Sheng li ke xue jin zhan [Progress in physiology],
J F Powers, and K H Schelling, and A S Tischler
March 2002, The Journal of biological chemistry,
J F Powers, and K H Schelling, and A S Tischler
November 1999, Experimental neurology,
J F Powers, and K H Schelling, and A S Tischler
January 2006, Journal of neuroscience research,
J F Powers, and K H Schelling, and A S Tischler
March 2000, The American journal of pathology,
J F Powers, and K H Schelling, and A S Tischler
June 1997, Proceedings of the National Academy of Sciences of the United States of America,
J F Powers, and K H Schelling, and A S Tischler
January 1999, Microscopy research and technique,
J F Powers, and K H Schelling, and A S Tischler
December 2004, Experimental neurology,
J F Powers, and K H Schelling, and A S Tischler
April 2004, Investigative ophthalmology & visual science,
Copied contents to your clipboard!