Neuroactive steroids and peripheral myelin proteins. 2001

V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
Department of Endocrinology and Center of Excellence for Neurodegenerative Disorders, University of Milan, Via Balzaretti 9, 20133, Milan, Italy. magnaghi@mailserver.unimi.it

The present review summarizes observations obtained in our laboratories which underline the importance of neuroactive steroids (i.e., progesterone (PROG), dihydroprogesterone (5alpha-DH PROG), tetrahydroprogesterone (3alpha, 5alpha-TH PROG), testosterone (T), dihydrotestosterone (DHT) and 5alpha-androstan-3alpha,17beta-diol (3alpha-diol)) in the control of the gene expression of myelin proteins (i.e. glycoprotein Po (Po) and the peripheral myelin protein 22 (PMP22)) in the peripheral nervous system. Utilizing different in vivo (aged and adult male rats) and in vitro (Schwann cell cultures) experimental models, we have observed that neuroactive steroids are able to stimulate the mRNA levels of Po and PMP22. The effects of these neuroactive steroids, which are able to interact with classical (progesterone receptor, PR, and androgen receptor, AR) and non-classical (GABA(A) receptor) steroid receptors is further supported by our demonstration in sciatic nerve and/or Schwann cells of the presence of these receptors. On the basis of the observations obtained in the Schwann cells cultures, we suggest that the stimulatory effect of neuroactive steroids on Po is acting through PR, while that on PMP22 needs the GABA(A) receptor. The present findings might be of importance for the utilization of specific receptor ligands as new therapeutical approaches for the rebuilding of the peripheral myelin, particularly in those situations in which the synthesis of Po and PMP22 is altered (i.e. demyelinating diseases like Charcot-Marie-Tooth type 1A and type 1B, hereditary neuropathy with liability to pressure palsies and the Déjérine-Sottas syndrome, aging, and after peripheral injury).

UI MeSH Term Description Entries
D008297 Male Males
D009185 Myelin Proteins MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure. Myelin Protein,Protein, Myelin,Proteins, Myelin
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D013256 Steroids A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed) Steroid,Catatoxic Steroids,Steroids, Catatoxic

Related Publications

V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
July 2006, Neuroscience letters,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
March 2008, Brain research reviews,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
February 2024, Medical principles and practice : international journal of the Kuwait University, Health Science Centre,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
November 2015, Steroids,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
March 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
August 2006, Expert review of neurotherapeutics,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
January 2011, Frontiers in endocrinology,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
July 2005, Alcoholism, clinical and experimental research,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
January 2001, International review of neurobiology,
V Magnaghi, and I Cavarretta, and M Galbiati, and L Martini, and R C Melcangi
April 2024, Neuro endocrinology letters,
Copied contents to your clipboard!