Mechanisms for intragenic complementation at the human argininosuccinate lyase locus. 2001

B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Ontario, Canada.

Argininosuccinate lyase (ASL) is a homotetrameric enzyme that catalyzes the reversible cleavage of argininosuccinate to arginine and fumarate. Deficiencies in the enzyme result in the autosomal, recessive disorder argininosuccinic aciduria. Considerable clinical and genetic heterogeneity is associated with this disorder, which is thought to be a consequence of the extensive intragenic complementation identified in patient strains. Our ability to predict genotype-phenotype relationships is hampered by the current lack of understanding of the mechanisms by which complementation can occur. The 3-dimensional structure of wild-type ASL has enabled us to propose that the complementation between two ASL active site mutant subunits, Q286R and D87G, occurs through a regeneration of functional active sites in the heteromutant protein. We have reconstructed this complementation event, both in vivo and in vitro, using recombinant proteins and have confirmed this hypothesis. The complementation events between Q286R and two nonactive site mutants, M360T and A398D, have also been characterized. The M360T and A398D substitutions have adverse effects on the thermodynamic stability of the protein. Complementation between either the M360T or the A398D mutant and the stable Q286R mutant occurs through the formation of a more stable heteromeric protein with partial recovery of catalytic activity. The detection and characterization of a novel complementation event between the A398D and D87G mutants has shown how complementation in patients with argininosuccinic aciduria may correlate with the clinical phenotype.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine

Related Publications

B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
March 1997, The Journal of biological chemistry,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
January 1998, Journal of inherited metabolic disease,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
August 1997, Proceedings of the National Academy of Sciences of the United States of America,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
October 2000, Cellular and molecular life sciences : CMLS,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
January 1982, Advances in experimental medicine and biology,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
January 1981, Human genetics,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
April 1989, Molecular biology & medicine,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
December 1977, Archives internationales de physiologie et de biochimie,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
October 2009, The Journal of biological chemistry,
B Yu, and G D Thompson, and P Yip, and P L Howell, and A R Davidson
August 2021, Plant physiology,
Copied contents to your clipboard!