Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. 2001

A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.

Natural killer (NK) T cells recognize lipid antigens in the context of the major histocompatibility complex (MHC) class 1-like molecule CD1 and rapidly secrete large amounts of the cytokines interferon (IFN)-gamma and interleukin (IL)-4 upon T cell receptor (TCR) engagement. We have asked whether NK T cell activation influences adaptive T cell responses to myelin antigens and their ability to cause experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. While simultaneous activation of NK T cells with the glycolipid alpha-galactosylceramide (alpha-GalCer) and myelin-reactive T cells potentiates EAE in B10.PL mice, prior activation of NK T cells protects against disease. Exacerbation of EAE is mediated by an enhanced T helper type 1 (Th1) response to myelin basic protein and is lost in mice deficient in IFN-gamma. Protection is mediated by immune deviation of the anti-myelin basic protein (MBP) response and is dependent upon the secretion of IL-4. The modulatory effect of alpha-GalCer requires the CD1d antigen presentation pathway and is dependent upon the nature of the NK T cell response in B10.PL or C57BL/6 mice. Because CD1 molecules are nonpolymorphic and remarkably conserved among different species, modulation of NK T cell activation represents a target for intervention in T cell-mediated autoimmune diseases.

UI MeSH Term Description Entries
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D005699 Galactosylceramides Cerebrosides which contain as their polar head group a galactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in beta-galactosidase, is the cause of galactosylceramide lipidosis or globoid cell leukodystrophy. Galactocerebrosides,Galactosyl Ceramide,Galactosyl Ceramides,Galactosylceramide,Ceramide, Galactosyl,Ceramides, Galactosyl
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017951 Antigen Presentation The process by which antigen is presented to lymphocytes in a form they can recognize. This is performed by antigen presenting cells (APCs). Some antigens require processing before they can be recognized. Antigen processing consists of ingestion and partial digestion of the antigen by the APC, followed by presentation of fragments on the cell surface. (From Rosen et al., Dictionary of Immunology, 1989) Antigen Processing,Antigen Presentations,Antigen Processings

Related Publications

A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
December 2001, The Journal of experimental medicine,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
October 2001, Nature,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
November 1997, The Journal of experimental medicine,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
September 2015, Immunology,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
March 2018, Journal of neuroimmunology,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
January 2003, Revista de neurologia,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
May 1998, European journal of immunology,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
October 2019, European review for medical and pharmacological sciences,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
February 2012, The Proceedings of the Nutrition Society,
A W Jahng, and I Maricic, and B Pedersen, and N Burdin, and O Naidenko, and M Kronenberg, and Y Koezuka, and V Kumar
February 2009, Current molecular medicine,
Copied contents to your clipboard!