Stimulation of dopamine receptors inhibited Ca2+-calmodulin-dependent protein kinase II activity in rat striatal slices. 2001

X Y Hou, and F M Tang, and G Y Zhang
Research Center of Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou 221002, China.

OBJECTIVE To investigate the mechanism underlying dopaminergic neurotoxicity in the striatum during anoxia. METHODS Using rat striatal slices as an in vitro model, the activity of Ca2+-calmodulin-dependent protein kinase II (CCDPKII) was examined by the method of substrate phosphorylation 32P-incorporation. RESULTS Anoxia for 30 min greatly reduced CCDPKII activity by about 75 %. Reserpinization by repeated reserpine administration (1 mg . kg-1 . d-1 for 7 d, sc) preserved CCDPK II activity against the anoxia-induced decrease (about 40 % of control). The activity of CCDPKII was reduced significantly by exposure of rat striatal slices to micromolar concentrations of dopamine in the presence of extracellular Ca2+. Omission of Ca2+ in the incubation medium (with addition of 1 mmol/L egtazic acid) diminished the dopamine-induced decrease of the kinase activity. Application of apomorphine, a non-selective dopamine receptor agonist, produced a similar concentration-related decrease of CCDPKII activity. Exposure to SKF38393 (selective D1-like receptor agonist) or quinpirole (selective D2-like receptor agonist) also inhibited the kinase activity. The dopamine-induced decrease of CCDPKII activity was attenuated by preincubation with Sch-23390 (selective D1-like receptor antagonist) or domperidone (selective D2-like receptor antagonist). CONCLUSIONS Dopamine is involved in the anoxia-induced inhibition of CCDPKII activity by activation of both D1-like and D2-like receptors and influx of Ca2+, which may contribute to dopamine-mediated striatal neuronal damage.

UI MeSH Term Description Entries
D008297 Male Males
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015647 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine A selective D1 dopamine receptor agonist used primarily as a research tool. 1H-3-Benzazepine-7,8-diol, 2,3,4,5-tetrahydro-1-phenyl-,R-SK&F 38393,SK&F-38393,SKF 38393-A,SKF-38393,SKF38393,RSK&F 38393,SK&F 38393,SK&F38393,SKF 38393,SKF 38393 A,SKF 38393A
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular

Related Publications

X Y Hou, and F M Tang, and G Y Zhang
October 1999, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
X Y Hou, and F M Tang, and G Y Zhang
June 1991, Proceedings of the National Academy of Sciences of the United States of America,
X Y Hou, and F M Tang, and G Y Zhang
January 1990, Seikagaku. The Journal of Japanese Biochemical Society,
X Y Hou, and F M Tang, and G Y Zhang
January 2002, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
X Y Hou, and F M Tang, and G Y Zhang
September 1996, Journal of neuroscience methods,
X Y Hou, and F M Tang, and G Y Zhang
June 1994, Journal of biochemistry,
X Y Hou, and F M Tang, and G Y Zhang
November 1979, Neuropharmacology,
X Y Hou, and F M Tang, and G Y Zhang
January 2002, Neuroscience,
X Y Hou, and F M Tang, and G Y Zhang
October 1986, Brain research,
Copied contents to your clipboard!