Structural organization of the immunoglobulin heavy chain locus in the channel catfish: the IgH locus represents a composite of two gene clusters. 2002

Tereza Ventura-Holman, and Craig J Lobb
Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.

Two structurally-related genomic clusters of catfish immunoglobulin heavy chain gene segments are known. The first gene cluster contains DH and JH segments, as well as the C region exons encoding the functional Cmu. The second gene cluster contains multiple VH gene segments representing different VH families, a germline-joined VDJ, a single JH segment, and at least two pseudogene Cmu exons. It was not known whether these gene clusters were linked, nor was the organization or the location of VH segments associated within the first gene cluster known. Pulsed-field gel electrophoresis studies have been used to determine the structural organization of these gene clusters. Restriction mapping studies show that the two gene clusters are closely linked; the second gene cluster is located upstream from the first with the Cmu regions within the clusters separated by about 725kb. The clusters are in the same relative transcriptional orientation, and the results indicate that the complete IgH locus spans no more than 1000kb and may be as small as 750-800kb. VH gene segments are located both upstream and downstream of the pseudo-Cmu exons; however, no VH gene segments that hybridized with the VH specific probes were detected downstream of the functional Cmu. These studies coupled with earlier sequence analyses indicate that the catfish IgH locus arose from a massive internal duplication event. Subsequent gene rearrangement within the duplicated cluster likely resulted in the presence of the germline VDJ and the deletion of intervening V, D and J segments. Transposition by a member of the Tc1/mariner family of transposable elements appears to have led to the disruption of the duplicated Cmu.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D002397 Catfishes Common name of the order Siluriformes. This order contains many families and over 2,000 species, including venomous species. Heteropneustes and Plotosus genera have dangerous stings and are aggressive. Most species are passive stingers. Eremophilus mutisii,Heteropneustes,Plotosus,Siluriformes,Arius,Catfish,Colombian Catfish,Catfish, Colombian
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

Tereza Ventura-Holman, and Craig J Lobb
February 1999, Journal of immunology (Baltimore, Md. : 1950),
Tereza Ventura-Holman, and Craig J Lobb
February 1992, Molecular immunology,
Tereza Ventura-Holman, and Craig J Lobb
September 1994, Genomics,
Tereza Ventura-Holman, and Craig J Lobb
January 1996, Advances in immunology,
Tereza Ventura-Holman, and Craig J Lobb
May 2023, Cold Spring Harbor protocols,
Tereza Ventura-Holman, and Craig J Lobb
December 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Tereza Ventura-Holman, and Craig J Lobb
June 2011, Current opinion in cell biology,
Tereza Ventura-Holman, and Craig J Lobb
January 1989, Immunogenetics,
Tereza Ventura-Holman, and Craig J Lobb
July 2010, Immunogenetics,
Copied contents to your clipboard!