Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins: possible role in cell proliferation. 2002

Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
Division of Life Sciences, King's College London, London, United Kingdom.

Polycystin-1, the product of the PKD1 gene, is a membrane-bound multidomain protein with a unique structure and a molecular weight of approximately 460 kD. The purpose of this study is to investigate the binding of the cystein-flanked leucine-rich repeats (LRR) of polycystin-1 to extracellular matrix (ECM) components. These interactions may play a role in normal renal development as well as the pathogenesis of autosomal-dominant polycystic kidney disease (ADPKD). In vitro assays were used to assess the binding of a fusion protein containing the LRR of polycystin-1 and that of affinity purified polycystin-1 to a number of ECM components. The results showed that the LRR modulate the binding of polycystin-1 to collagen I, fibronectin, laminin, and cyst fluid-derived laminin fragments. The addition of the LRR fusion protein to cells in culture resulted in a significant dose-dependent reduction in the rate of proliferation. Cyst fluid-derived laminin fragments had a stimulatory effect on cell proliferation, which was reversed by the LRR fusion protein. These results suggest that the LRR of polycystin-1 act as mediators of the polycystin-1 interaction with the ECM. The observed suppression effect of the LRR on cell proliferation suggests a functional role of the LRR-mediated polycystin-1 involvement in cell-matrix and cell-cell interactions. These interactions may result in the enhanced cell proliferation that is a characteristic feature of ADPKD.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016326 Extracellular Matrix Proteins Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix

Related Publications

Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
June 1995, Current opinion in structural biology,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
January 2005, Cerebellum (London, England),
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
April 1998, Matrix biology : journal of the International Society for Matrix Biology,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
July 2004, Molecular immunology,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
August 2004, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
November 1990, Proceedings of the National Academy of Sciences of the United States of America,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
February 2012, Neuroscience letters,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
January 1974, The ... Symposium. Society for Developmental Biology. Symposium,
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
September 1995, Structure (London, England : 1993),
Ashraf N Malhas, and Ramadan A Abuknesha, and Robert G Price
February 2009, Molecular immunology,
Copied contents to your clipboard!