Nm23/nucleoside diphosphate kinase in human cancers. 2000

M T Hartsough, and P S Steeg
Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. hartso@box-h.nih.gov

Tumor metastasis is the leading cause of death in cancer patients. From a series of tumor cohort studies, low expression of Nm23/NDP kinase has been correlated with poor patient prognosis and survival, lymph node infiltration, and histopathological indicators of high metastatic potential in a number of cancer types, including mammary and ovarian carcinomas and melanoma. In other tumor types, no correlation has been established. Transfection of Nm23/NDP kinase cDNA into highly metastatic breast, melanoma, prostrate and squamous cell carcinomas, and colon adenocarcinoma cells significantly reduced the metastatic competency of the cells in vivo. In culture, cell motility, invasion, and colonization were inhibited, whereas tumorigenicity and cellular proliferation were not affected, indicating that Nm23/NDP kinase acts as a metastasis suppressor.

UI MeSH Term Description Entries
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009701 Nucleoside-Diphosphate Kinase An enzyme that is found in mitochondria and in the soluble cytoplasm of cells. It catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside diphosphate, e.g., UDP, to form ADP and UTP. Many nucleoside diphosphates can act as acceptor, while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.6. Deoxynucleoside Diphosphate Kinases,GDP Kinase,Nucleoside Diphosphokinases,Nucleoside-Diphosphate Kinases,Diphosphate Kinases, Deoxynucleoside,Diphosphokinases, Nucleoside,Kinase, GDP,Kinase, Nucleoside-Diphosphate,Kinases, Deoxynucleoside Diphosphate,Kinases, Nucleoside-Diphosphate,Nucleoside Diphosphate Kinase,Nucleoside Diphosphate Kinases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D054778 NM23 Nucleoside Diphosphate Kinases A family of nucleotide diphosphate kinases that play a role in a variety of cellular signaling pathways that effect CELL DIFFERENTIATION; CELL PROLIFERATION; and APOPTOSIS. They are considered multifunctional proteins that interact with a variety of cellular proteins and have functions that are unrelated to their enzyme activity. Nucleoside Diphosphate Kinase A,DR-NM23 Nucleoside Diphosphate Kinase,Expressed in Non-Metastatic Cells 2 Protein,Granzyme A-activated DNase,NDP Kinase A,NM23-H2 Nucleoside Diphosphate Kinase,NM23-H3 Nucleoside Diphosphate Kinase,NM23A Nucleoside Diphosphate Kinases,NM23B Nucleoside Diphosphate Kinase,NME1 Nucleoside Diphosphate Kinase,Nm23-H1 Nucleoside Diphosphate Kinase,Non-Metastatic Cells 1 Protein,Nucleoside Diphosphate Kinase 3,Nucleoside Diphosphate Kinase B,Nucleoside Diphosphate Kinase C,Tumor Metastatic Process-Associated Protein,DR NM23 Nucleoside Diphosphate Kinase,Expressed in Non Metastatic Cells 2 Protein,Granzyme A activated DNase,NM23 H2 Nucleoside Diphosphate Kinase,NM23 H3 Nucleoside Diphosphate Kinase,Nm23 H1 Nucleoside Diphosphate Kinase,Non Metastatic Cells 1 Protein,Tumor Metastatic Process Associated Protein
D019656 Loss of Heterozygosity The loss of one allele at a specific locus, caused by a deletion mutation; or loss of a chromosome from a chromosome pair, resulting in abnormal HEMIZYGOSITY. It is detected when heterozygous markers for a locus appear monomorphic because one of the ALLELES was deleted. Allelic Loss,Heterozygosity, Loss of,Allelic Losses,Heterozygosity Loss
D020559 Monomeric GTP-Binding Proteins A class of monomeric, low molecular weight (20-25 kDa) GTP-binding proteins that regulate a variety of intracellular processes. The GTP bound form of the protein is active and limited by its inherent GTPase activity, which is controlled by an array of GTPase activators, GDP dissociation inhibitors, and guanine nucleotide exchange factors. This enzyme was formerly listed as EC 3.6.1.47 G-Proteins, Monomeric,GTP-Binding Proteins, Monomeric,Monomeric G-Protein,Monomeric G-Proteins,Small G-Protein,Small G-Proteins,Small GTPase,Small GTPases,ras-Related GTP-Binding Protein,ras-Related GTPase,ras-Related GTPases,ras-Related G-Proteins,ras-Related GTP-Binding Proteins,G Proteins, Monomeric,G-Protein, Monomeric,G-Protein, Small,G-Proteins, Small,G-Proteins, ras-Related,GTP Binding Proteins, Monomeric,GTP-Binding Protein, ras-Related,GTP-Binding Proteins, ras-Related,GTPase, Small,GTPase, ras-Related,GTPases, Small,GTPases, ras-Related,Monomeric G Protein,Monomeric G Proteins,Monomeric GTP Binding Proteins,Protein, ras-Related GTP-Binding,Proteins, ras-Related GTP-Binding,Small G Protein,Small G Proteins,ras Related G Proteins,ras Related GTP Binding Protein,ras Related GTP Binding Proteins,ras Related GTPase,ras Related GTPases

Related Publications

M T Hartsough, and P S Steeg
January 1991, Bulletin du cancer,
M T Hartsough, and P S Steeg
June 2000, Journal of bioenergetics and biomembranes,
M T Hartsough, and P S Steeg
August 1993, Bulletin du cancer,
M T Hartsough, and P S Steeg
February 1998, Biochemical and biophysical research communications,
M T Hartsough, and P S Steeg
January 2000, Ophthalmic research,
M T Hartsough, and P S Steeg
June 2000, Journal of bioenergetics and biomembranes,
M T Hartsough, and P S Steeg
September 2009, Molecular and cellular biochemistry,
M T Hartsough, and P S Steeg
August 1995, Journal of molecular biology,
M T Hartsough, and P S Steeg
January 1991, European journal of cancer (Oxford, England : 1990),
M T Hartsough, and P S Steeg
June 2012, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!