Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. 2001

C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany. christiane.pauli-magnus@ikp-stuttgart.de

Proton pump inhibitors are a class of drugs which are widely prescribed for acid-related diseases. They are primarily metabolized by CYP2C19 and CYP3A4. It is unknown so far whether proton pump inhibitors are also substrates of the ATP-dependent efflux transporter P-glycoprotein. Moreover, it is not established whether proton pump inhibitors are also inhibitors of P-glycoprotein function. The aim of our study was therefore to characterize omeprazole, lansoprazole and pantoprazole as P-glycoprotein substrates and inhibitors. Polarized transport of these compounds was assessed in P-glycoprotein-expressing Caco-2 and L-MDR1 cells. Inhibition of P-glycoprotein-mediated transport was determined using the cyclosporine analogue PSC-833 (valspodar) as P-glycoprotein inhibitor. Inhibition of efflux transport by omeprazole, lansoprazole and pantoprazole was assessed using digoxin as P-glycoprotein substrate. At concentrations of 5 microM, basal-to-apical transport of omeprazole, lansoprazole and pantoprazole was greater than apical-to-basal transport in Caco-2 and L-MDRI cells. Addition of PSC-833 (1 microM) showed a clear effect only for lansoprazole, suggesting that other transporters contribute to omeprazole and pantoprazole cellular translocation. Furthermore, all of the tested compounds inhibited digoxin transport with IC50 values of 17.7, 17.9 and 62.8 microM for omeprazole, pantoprazole and lansoprazole, respectively. In summary, our data provide evidence that proton pump inhibitors are substrates and inhibitors of P-glycoprotein. These findings might explain some of the drug interactions with proton pump inhibitors observed in vivo.

UI MeSH Term Description Entries
D009853 Omeprazole A 4-methoxy-3,5-dimethylpyridyl, 5-methoxybenzimidazole derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits an H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS. H 168-68,Omeprazole Magnesium,Omeprazole Sodium,Prilosec,H 168 68,H 16868,Magnesium, Omeprazole,Sodium, Omeprazole
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077402 Pantoprazole 2-pyridinylmethylsulfinylbenzimidazole proton pump inhibitor that is used in the treatment of GASTROESOPHAGEAL REFLUX and PEPTIC ULCER. BY 1023,BY-1023,Pantoprazole Sodium,Protonix,SK&F 96022,SK&F-96022,SKF-96022,BY1023,SK&F96022,SKF 96022,SKF96022
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000897 Anti-Ulcer Agents Various agents with different action mechanisms used to treat or ameliorate PEPTIC ULCER or irritation of the gastrointestinal tract. This has included ANTIBIOTICS to treat HELICOBACTER INFECTIONS; HISTAMINE H2 ANTAGONISTS to reduce GASTRIC ACID secretion; and ANTACIDS for symptomatic relief. Anti-Ulcer Drugs,Agents, Anti-Ulcer,Anti Ulcer Agents,Anti Ulcer Drugs,Drugs, Anti-Ulcer
D001562 Benzimidazoles Compounds with a BENZENE fused to IMIDAZOLES.

Related Publications

C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
September 1999, British journal of clinical pharmacology,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
November 2002, Journal of pharmaceutical and biomedical analysis,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
October 1996, European journal of gastroenterology & hepatology,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
April 2012, Chirality,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
December 2003, The American journal of gastroenterology,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
July 1996, Clinical pharmacokinetics,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
January 2000, Journal of the American Pharmaceutical Association (Washington, D.C. : 1996),
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
February 2009, World journal of gastroenterology,
C Pauli-Magnus, and S Rekersbrink, and U Klotz, and M F Fromm
January 1998, European journal of drug metabolism and pharmacokinetics,
Copied contents to your clipboard!