Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines. 2002

G Fossati, and R C Bucknall, and S W Edwards
School of Biological Sciences, Life Sciences Building, University of Liverpool, Liverpool L69 7ZB, UK.

BACKGROUND Rheumatoid synovial fluid contains both soluble and insoluble immune complexes that can activate infiltrating immune cells such as neutrophils. OBJECTIVE To determine if these different complexes activate neutrophils through similar or different receptor signalling pathways. In particular, to determine the circumstances which result in the secretion of tissue damaging reactive oxygen metabolites and granule enzymes. METHODS Blood neutrophils were incubated with synthetic soluble and insoluble immune complexes and the ability to generate reactive oxidants tested by luminescence or spectrophotometric assays that distinguished between intracellular and extracellular production. Degranulation of myeloperoxidase and lactoferrin was determined by western blotting. The roles of FcgammaRII (CD32) and FcgammaRIIIb (CD16) were determined by incubation with Fab/F(ab')(2) fragments before activation. The effect of cytokine priming was determined by incubation with GM-CSF. RESULTS Insoluble immune complexes activated unprimed neutrophils, but most of the oxidants produced were intracellular. This activation required FcgammaRIIIb, but not FcgammaRII function. Soluble complexes failed to activate unprimed neutrophils but generated a rapid and extensive secretion of reactive oxygen metabolites when the cells were primed with granulocyte-macrophage colony stimulating factor (GM-CSF). This activity required both FcgammaRII and FcgammaRIIIb function. Insoluble immune complexes activated the release of granule enzymes from primed or unprimed neutrophils, but the kinetics of release did not parallel those of secretion of reactive oxygen metabolites. Only primed neutrophils released enzymes in response to soluble complexes. CONCLUSIONS Soluble and insoluble immune complexes activate neutrophils by separate receptor signalling pathways. Profound changes in neutrophil responsiveness to these complexes occur after cytokine priming.

UI MeSH Term Description Entries
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

G Fossati, and R C Bucknall, and S W Edwards
November 1990, Journal of immunology (Baltimore, Md. : 1950),
G Fossati, and R C Bucknall, and S W Edwards
December 1988, European journal of immunology,
G Fossati, and R C Bucknall, and S W Edwards
January 1979, International archives of allergy and applied immunology,
G Fossati, and R C Bucknall, and S W Edwards
January 1988, Monographs in allergy,
G Fossati, and R C Bucknall, and S W Edwards
December 1996, Biologicals : journal of the International Association of Biological Standardization,
G Fossati, and R C Bucknall, and S W Edwards
December 1988, Current opinion in immunology,
G Fossati, and R C Bucknall, and S W Edwards
April 1979, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!