Detection of DNA damage in response to cooling injury in equine spermatozoa using single-cell gel electrophoresis. 2002

Jennifer J Linfor, and Stuart A Meyers
Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA.

Single-cell gel electrophoresis (SCGE), or comet assay, has the ability to detect damage at the single cell level and has not been reported for equine sperm. The ability to detect nuclear damage at the single cell level could aid in the advancement of protocols for optimal semen preservation. The goals of these experiments were to adapt this assay for use with equine sperm and to utilize the assay for determining the integrity of equine sperm DNA following treatments with storage at various decreased temperatures (-20 degrees C and 5 degrees C). Results from experiments in which sperm were frozen (-20 degrees C) in the absence of cryoprotectants revealed that significantly more cells with fragmented tails of DNA, or comets, occurred among those exposed to 1, 3, and 5 freeze-thaw cycles (65% +/- 6%, 76% +/- 11%, 92% +/- 6%, respectively) compared with fresh, untreated sperm (19% +/- 16%, P < .05). In addition DNA damage was different (P < .05) between the three freeze-thaw treatments. Sensitivity of SCGE on equine sperm was further tested with known ratios of frozen-thawed and fresh cells. The amount of detectable DNA damage was positively correlated with the percentage of cryo-damaged cells in each treatment (r2 = 0.92, P < .05). Potential damage as a result of cooled storage was also investigated and results revealed that sperm stored for 48 hours (at 5 degrees C) had a higher percentage of comets than that of fresh sperm (63% +/- 13.9% and 28% +/- 15.6%, respectively, P < .05). The percentage of viable sperm also decreased linearly over time and was inversely correlated with percent of comets (r2 = 0.805, P < .001). Detection of sublethal and/or uncompensable fertility factors in semen, such as DNA fragmentation, could be useful for detecting male differences in semen for cooling or cryopreservation potential and could provide a tool for monitoring and preserving fertility for individual stallions.

UI MeSH Term Description Entries
D008297 Male Males
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012662 Semen Preservation The process by which semen is kept viable outside of the organism from which it was derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Frozen Semen,Sperm Preservation,Preservation, Semen,Preservation, Sperm,Semen, Frozen
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic
D020552 Comet Assay A genotoxicological technique for measuring DNA damage in an individual cell using single-cell gel electrophoresis. Cell DNA fragments assume a "comet with tail" formation on electrophoresis and are detected with an image analysis system. Alkaline assay conditions facilitate sensitive detection of single-strand damage. Alkaline Comet Assay,Alkaline Single-Cell Gel Electrophoresis Assay,Electrophoresis, Gel, Single-Cell,Gel Electrophoresis, Single-Cell,Alkaline Comet Assays,Alkaline Single Cell Gel Electrophoresis Assay,Assay, Alkaline Comet,Assay, Comet,Assays, Alkaline Comet,Assays, Comet,Comet Assay, Alkaline,Comet Assays,Comet Assays, Alkaline,Electrophoreses, Single-Cell Gel,Electrophoresis, Single-Cell Gel,Gel Electrophoreses, Single-Cell,Gel Electrophoresis, Single Cell,Single-Cell Gel Electrophoreses,Single-Cell Gel Electrophoresis

Related Publications

Jennifer J Linfor, and Stuart A Meyers
April 2011, Journal of pharmacology & pharmacotherapeutics,
Jennifer J Linfor, and Stuart A Meyers
July 1999, Electrophoresis,
Jennifer J Linfor, and Stuart A Meyers
January 2010, Methods in molecular biology (Clifton, N.J.),
Jennifer J Linfor, and Stuart A Meyers
December 2002, Zhonghua nan ke xue = National journal of andrology,
Jennifer J Linfor, and Stuart A Meyers
December 2006, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases,
Jennifer J Linfor, and Stuart A Meyers
January 2013, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Jennifer J Linfor, and Stuart A Meyers
January 2011, Methods in molecular biology (Clifton, N.J.),
Jennifer J Linfor, and Stuart A Meyers
September 2011, Indian journal of human genetics,
Jennifer J Linfor, and Stuart A Meyers
May 2004, The Medical journal of Malaysia,
Jennifer J Linfor, and Stuart A Meyers
May 1998, Analytical biochemistry,
Copied contents to your clipboard!