Stoichiometry and structural effect of the cyclic nucleotide binding to cyclic AMP receptor protein. 2002

Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea.

Cyclic AMP receptor protein (CRP) is a homodimeric protein, which is activated by cAMP binding to function as a transcriptional regulator of many genes in prokaryotes. Until now, the actual number of cAMP molecules that can be bound by CRP in solution has been ambiguous. In this work, we performed a nuclear magnetic resonance study on CRP to investigate the stoichiometry of cyclic nucleotide binding to CRP. A series of (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of the protein in the absence and in the presence of cAMP or cGMP were analyzed. The addition of cAMP to CRP induced a biphasic spectral change up to 4 equivalents, whereas the cGMP addition made a monophasic change up to 2 equivalents. Altogether, the results not only established for the first time that CRP possesses two cyclic AMP-binding sites in each monomer, even in a solution without DNA, but also suggest that the syn-cAMP binding sites of the CRP dimer can be formed by an allosteric conformational change of the protein upon the binding of two anti-cAMPs at the N-terminal domain. In addition, a residue-specific inspection of the spectral changes provides some new structural information about the cAMP-induced allosteric activation of CRP.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations
D019906 Nuclear Magnetic Resonance, Biomolecular NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR

Related Publications

Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
September 1996, Biochemistry and molecular biology international,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
January 1972, Biochemical and biophysical research communications,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
July 1989, The Biochemical journal,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
August 1988, The Biochemical journal,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
April 1993, Nucleic acids research,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
April 2003, The Journal of biological chemistry,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
August 1994, Nucleic acids research,
Hyung-Sik Won, and Tae-Woo Lee, and Sang-Ho Park, and Bong-Jin Lee
March 1988, The Biochemical journal,
Copied contents to your clipboard!