Force/shortening-frequency relationship in multicellular muscle strips and single cardiomyocytes of human failing and nonfailing hearts. 2001

K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
Laboratory of Muscle Research and Molecular Cardiology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany.

BACKGROUND Force of contraction (FOC) frequency-dependently increases in multicellular muscle strip preparations of human nonfailing myocardium, whereas FOC declines in human failing myocardium with increasing stimulation frequency. We investigated whether these characteristics can be observed in single isolated myocytes. RESULTS Isolated multicellular muscle strip preparations and single isolated cardiomyocytes of failing (heart transplants, dilative cardiomyopathy; n = 11) and nonfailing (donor hearts; n = 11) human hearts were studied. The changes in contraction amplitude (cell shortening in micrometers) at increasing frequency of stimulation (0.5-2 Hz) were continuously recorded with a 1-dimensional high-speed camera that detected the cell edges and measured their distance during contraction. The increase in stimulation frequency was associated with a significant decrease in FOC (2 v 0.5 Hz; 68% basal) and a decrease in cell shortening of human left ventricular cardiomyocytes from failing hearts (2 v 0.5 Hz; 65% basal). In contrast, in human nonfailing myocardium, contraction increased at increasing stimulation frequencies (2 v 0.5 Hz; FOC, 180% basal; cell shortening, 129% basal). CONCLUSIONS The negative force-frequency relationship measured in multicellular preparations of failing human myocardium results from alterations at the single cell level.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D002311 Cardiomyopathy, Dilated A form of CARDIAC MUSCLE disease that is characterized by ventricular dilation, VENTRICULAR DYSFUNCTION, and HEART FAILURE. Risk factors include SMOKING; ALCOHOL DRINKING; HYPERTENSION; INFECTION; PREGNANCY; and mutations in the LMNA gene encoding LAMIN TYPE A, a NUCLEAR LAMINA protein. Cardiomyopathy, Congestive,Congestive Cardiomyopathy,Dilated Cardiomyopathy,Cardiomyopathy, Dilated, 1a,Cardiomyopathy, Dilated, Autosomal Recessive,Cardiomyopathy, Dilated, CMD1A,Cardiomyopathy, Dilated, LMNA,Cardiomyopathy, Dilated, With Conduction Defect 1,Cardiomyopathy, Dilated, with Conduction Deffect1,Cardiomyopathy, Familial Idiopathic,Cardiomyopathy, Idiopathic Dilated,Cardiomyopathies, Congestive,Cardiomyopathies, Dilated,Cardiomyopathies, Familial Idiopathic,Cardiomyopathies, Idiopathic Dilated,Congestive Cardiomyopathies,Dilated Cardiomyopathies,Dilated Cardiomyopathies, Idiopathic,Dilated Cardiomyopathy, Idiopathic,Familial Idiopathic Cardiomyopathies,Familial Idiopathic Cardiomyopathy,Idiopathic Cardiomyopathies, Familial,Idiopathic Cardiomyopathy, Familial,Idiopathic Dilated Cardiomyopathies,Idiopathic Dilated Cardiomyopathy
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
January 2003, Physiological genomics,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
January 1998, Basic research in cardiology,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
October 1996, British journal of pharmacology,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
January 1995, Journal of molecular and cellular cardiology,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
February 1970, The American journal of the medical sciences,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
January 2002, Basic research in cardiology,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
January 1996, Molecular and cellular biochemistry,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
September 1991, Journal of cardiovascular pharmacology,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
January 1998, Basic research in cardiology,
K Brixius, and S Hoischen, and H Reuter, and K Lasek, and R H Schwinger
May 1992, The Clinical investigator,
Copied contents to your clipboard!