Differential impairment of glucagon responses to hypoglycemia, neuroglycopenia, arginine, and carbachol in alloxan-diabetic mice. 2002

Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
Department of Medicine, Lund University, Lund, Sweden.

To gain insight into the mechanisms responsible for the loss of the glucagon response to insulin-induced hypoglycemia in type 1 diabetes, glucagon responses to 4 different stimuli were examined over 3 months of diabetes in alloxan-treated mice. At 1, 6, and 12 weeks after alloxan (60 mg/kg), phloridzin (0.1 g/kg) was administered to overnight fasted diabetic mice to match the glucose levels of those in nondiabetic control mice before administration of the acute stimuli. Despite the elevation of baseline glucagon levels produced by the phloridzin treatment, the glucagon responses to insulin (2 U/kg intraperitoneally [IP])-induced hypoglycemia was not impaired at 1 week. However, the response was reduced by greater than 60% after 6 and 12 weeks of diabetes (P <.05). In contrast, the glucagon response to arginine (0.25 g/kg intravenously [IV]) was not reduced after 1, 6, or 12 weeks of diabetes, ruling out a generalized impairment of the A-cell responses. The glucagon response to the neuroglucopenic agent, 2-deoxyglucose (2-DG; 500 mg/kg IV) was impaired, like that to insulin-induced hypoglycemia, after 6 and 12 weeks of diabetes (P <.05), suggesting that supersensitivity to the potential inhibitory effects of exogenous insulin is not the mechanism responsible for the impairment. Finally, the glucagon response to the cholinergic agonist, carbachol (0.53 micromol/kg IV), was not impaired in the diabetic animals, arguing against a defect in the A-cell's responsiveness to autonomic stimulation. The data suggest that the impairment of the glucagon response to insulin-induced hypoglycemia in alloxan diabetic mice is not due to a generalized impairment of A-cell responsiveness, to desensitization by a suppressive action of insulin, or to impairment of the A-cell response to autonomic stimuli. The remaining mechanisms which are likely to explain the late loss of the glucagon response to insulin-induced hypoglycemia include (1) a defect in the A-cell recognition of glucopenic stimuli, or (2) a defect in the autonomic inputs to the A cell that are known to be activated by glucopenic stimuli.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D005260 Female Females
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor

Related Publications

Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
April 1979, Scandinavian journal of clinical and laboratory investigation,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
August 1983, Endocrinologia japonica,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
July 1977, Clinical and experimental immunology,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
June 1965, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
January 1980, Hormone and metabolic research. Supplement series,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
February 1976, Metabolism: clinical and experimental,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
March 1971, Diabetes,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
June 2007, Endocrinology,
Bo Ahrén, and Gerald J Taborsky, and Peter J Havel
June 1974, Archives internationales de pharmacodynamie et de therapie,
Copied contents to your clipboard!