Long-chain polyunsaturated fatty acids in breast milk: are they essential? 2001

R A Gibson, and M Makrides
Child Nutrition Research Centre, Child Health Research Institute, Flinders Medical Centre, Adelaide, SA, Australia.

The need for long-chain polyunsaturated fatty acids (LC-PUFA), such as docosahexaenoic acid (DHA, C22:6n3) and arachidonic acid (AA, C20:4n6), in the diet of infants in order to achieve full developmental potential is a matter of intense investigation by several research groups worldwide. It has been widely reported that breast-fed infants perform better on tests that assess neurodevelopmental outcomes than do formula-fed infants. Although human milk contains LC-PUFA that are absent from formula, it is necessary to demonstrate that any beneficial effects of human milk on infant development are purely attributed to the presence of LC-PUFA in human milk and their absence from formula to establish causality. The hypothesis that dietary DHA is associated with developmental outcome needs to be plausible; the effect must be consistent, specific, and independent of confounding factors. The hypothesis is certainly plausible. DHA is avidly incorporated and retained in brain cerebral phospholipids, and a most consistent finding has been the lower level of cerebral DHA in the brains of formula-fed infants (receiving no DHA) relative to those fed human milk (receiving DHA). The formula-fed infants in these studies were generally fed formulas with adequate alpha-linolenic acid levels, and this may indicate a nutritional requirement for preformed DHA. Several studies have compared the effects of breast- and formula-feeding on functional outcomes in preterm and term infants. While many of the outcomes have involved visual testing, others have attempted more global assessments. The results have shown differences in favor of breast-feeding but have been colored by the strong socioeconomic differences between mothers who choose to breast feed and those who choose formula-feeding. Randomized clinical trials involving preterm infants have shown a clear requirement for DHA for full visual and neural development. These results are consistent with primate studies. However, intervention studies with term infants that have attempted to improve the DHA supply of infant formula and hence infant development have not yielded consistent results. Some randomized studies have demonstrated improved visual and developmental indices in supplemented over unsupplemented infants, others have failed to demonstrate an effect. This disparity could be due to methodological and environmental differences. It is also notable that supplemental regimens have not specifically added DHA and have included other LC-PUFA, raising the question as to the specificity of the effect. However, only tissue DHA levels have consistently correlated with outcomes.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007227 Infant Nutritional Physiological Phenomena Nutritional physiology of children from birth to 2 years of age. Infant Nutrition Physiology,Nutrition Physiology, Infant,Complementary Feeding,Infant Nutritional Physiological Phenomenon,Infant Nutritional Physiology,Supplementary Feeding,Complementary Feedings,Feeding, Complementary,Feeding, Supplementary,Feedings, Complementary,Feedings, Supplementary,Nutritional Physiology, Infant,Physiology, Infant Nutrition,Physiology, Infant Nutritional,Supplementary Feedings
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008895 Milk, Human Milk that is produced by HUMAN MAMMARY GLANDS. Breast Milk,Human Milk,Milk, Breast
D009751 Nutritional Requirements The amounts of various substances in food needed by an organism to sustain healthy life. Dietary Requirements,Nutrition Requirements,Dietary Requirement,Nutrition Requirement,Nutritional Requirement,Requirement, Dietary,Requirement, Nutrition,Requirement, Nutritional,Requirements, Dietary,Requirements, Nutrition,Requirements, Nutritional
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium

Related Publications

R A Gibson, and M Makrides
August 1999, Acta paediatrica (Oslo, Norway : 1992). Supplement,
R A Gibson, and M Makrides
March 2001, Developmental medicine and child neurology. Supplement,
R A Gibson, and M Makrides
July 1995, Ugeskrift for laeger,
R A Gibson, and M Makrides
January 2001, Advances in experimental medicine and biology,
R A Gibson, and M Makrides
January 1998, Biology of the neonate,
R A Gibson, and M Makrides
January 2009, The British journal of nutrition,
R A Gibson, and M Makrides
April 2014, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
R A Gibson, and M Makrides
November 1989, The American journal of clinical nutrition,
Copied contents to your clipboard!