ACTH-induced Cl(-) current in bovine adrenocortical cells: correlation with cortisol secretion. 2002

Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
Université Claude Bernard Lyon I, Laboratoire de Physiologie des Eléments Excitables, Unité Mixte de Recherche 5123 Centre National de la Recherche Scientifique, 69622 Villeurbanne, France.

ACTH has been shown to depolarize bovine adrenal zona fasciculata cells by inhibiting a K(+) current. The effects of this hormone on such cells have been reexamined using perforated and standard patch recording methods. In current clamp experiments, ACTH (10 nM) induced a membrane depolarization to -36 +/- 1 mV (n = 56), which was mimicked by forskolin (10 microM) or by 8-(4-chlorophenylthio)-cAMP (8 mM). ACTH-induced membrane depolarizations were associated in the majority of cells with an increase in membrane conductance. In the other cells, these membrane responses could occur without change or could be correlated with a transient or with a continuous Cs(+)-sensitive decrease in membrane conductance. The depolarizations associated with an increase in membrane conductance were depressed by Cl(-) current inhibitors diphenylamine-2-carboxylic acid (DPC; 1 mM), anthracene-9-carboxylic acid (9-AC; 1 mM), DIDS (400 microM), verapamil (100 microM), and glibenclamide (20 microM). In voltage-clamped Cs(+)-loaded cells, ACTH activated a time-independent current that displayed an outward rectification and reversed at -21.5 mV +/- 2 (n = 6). This current, observed in the presence of internal EGTA (5 mM), was depressed in low Cl(-) external solution and was inhibited by DPC, 9-AC, DIDS, 5-nitro-2-(3-phenylpropylamino)benzoic acid, verapamil, and glibenclamide. ACTH-stimulated cortisol secretion was blocked by Cl(-) channel inhibitors DIDS (400 microM) and DPC (1 mM). The present results reveal that, in addition to inhibiting a K(+) current, ACTH activates in bovine zona fasciculata cells a Ca(2+)-insensitive, cAMP-dependent Cl(-) current. This Cl(-) current is involved in the ACTH-induced membrane depolarization, which seems to be a crucial step in stimulating steroidogenesis.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic

Related Publications

Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
March 1997, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
March 1997, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
November 2000, Endocrine research,
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
October 1997, Japanese journal of pharmacology,
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
May 2010, Reproductive sciences (Thousand Oaks, Calif.),
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
October 1997, Endocrine journal,
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
March 1994, Biochemical pharmacology,
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
February 1992, Biochemical pharmacology,
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
January 1992, The Journal of steroid biochemistry and molecular biology,
Sylvie Dupré-Aucouturier, and Armelle Penhoat, and Oger Rougier, and André Bilbaut
August 1989, Rinsho byori. The Japanese journal of clinical pathology,
Copied contents to your clipboard!