Electrical stimulation of the brain. III. The neural damage model. 1975

R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht

A major concern in the use of neural prostheses is whether electrical stimualtion can cause irreversible damage to neurons. The Neural Damage Model was devised to study the problem and to provide guidlines. The cerebral cortex of cats was stimulated continuously for 36 hours with balanced, biphasic waveforms. The charge per phase, charge density and current density were varied in 16 separate tests. Of these stimulus parameters the charge per phase was more closely correlatable with neuronal damage than charge density and current density. Furthermore, the findings in this study suggest that current flow is more important than electrochemical reactions in causing neural damage. Correlation between blood-brain barrier (BBB) breakdown and neuronal damage was valid only in the group of animals sacrificed immediately following stimulation. The BBB is restored within one month following electrical injury. Convulsive seizures occurred in all but one of the animals during electrical stimulation. A technique for localizing the electrode sites at autopsy and in the microscopic sections is described.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006003 Glycogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 1988, Annals of biomedical engineering,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 1980, Annals of biomedical engineering,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 2014, Brain stimulation,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 1989, Critical reviews in biomedical engineering,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
July 2019, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
December 2018, Journal of neural engineering,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
December 1996, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 2009, Progress in brain research,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 2019, Progress in brain research,
R H Pudenz, and L A Bullara, and S Jacques, and F T Hambrecht
January 2000, Journal of computational neuroscience,
Copied contents to your clipboard!