Solute transport across the peritoneal membrane. 2002

John K Leypoldt
Research Service, VA Salt Lake City Health Care System, and Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112-5350, USA. Ken.Leypoldt@hsc.utah.edu

The current understanding of the transport pathways that govern solute removal during peritoneal dialysis is reviewed. Diffusive transport rates across the peritoneal membrane for small solutes are slow. Even though the rate of diffusive solute transport decreases with increasing molecular size, large molecules (e.g., albumin) are nevertheless removed from the patient during routine peritoneal dialysis. Recent work has confirmed a previous suggestion that diffusive solute transport is limited by the small area of the peritoneal membrane that participates in the transport process. This small functional area is due to either poor contact of the peritoneal membrane with dialysis solution bathing the peritoneal cavity or to the limited surface area of capillaries that perfuse peritoneal tissues. Convective solute transport during peritoneal dialysis is proportional to the transperitoneal ultrafiltration rate but is less than that expected, because of low solute sieving by the peritoneal membrane and fluid absorption from the peritoneal cavity. Low solute sieving across the peritoneal membrane was first identified in 1966, a phenomenon that is now attributed to the presence of water-only transport pathways mediated by aquaporin-1. Fluid absorption from the peritoneal cavity occurs at the same time as transperitoneal ultrafiltration, but the pathways by which these two processes occur simultaneously remain speculative. This review proposes a novel hypothesis, whereby fluid absorption occurs in areas of the peritoneal membrane that are governed by different physical forces than those governing transperitoneal ultrafiltration. Further understanding of the pathways for fluid and solute transport during peritoneal dialysis will permit improvements in the adequacy of the dialysis dose and the more efficacious use of peritoneal dialysis to treat patients with end-stage renal disease.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010530 Peritoneal Dialysis Dialysis fluid being introduced into and removed from the peritoneal cavity as either a continuous or an intermittent procedure. Dialyses, Peritoneal,Dialysis, Peritoneal,Peritoneal Dialyses
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015314 Dialysis Solutions Solutions prepared for exchange across a semipermeable membrane of solutes below a molecular size determined by the cutoff threshold of the membrane material. Dialysate,Dialysis Solution,Dialyzate,Dialysates,Dialyzates,Solution, Dialysis,Solutions, Dialysis

Related Publications

John K Leypoldt
September 2015, Current opinion in nephrology and hypertension,
John K Leypoldt
January 2014, Jornal brasileiro de nefrologia,
John K Leypoldt
January 1966, American journal of veterinary research,
John K Leypoldt
April 2014, Kidney international,
John K Leypoldt
December 2004, Biochimica et biophysica acta,
John K Leypoldt
February 1996, Journal of the American Society of Nephrology : JASN,
John K Leypoldt
November 2003, Kidney international,
John K Leypoldt
December 2014, American journal of kidney diseases : the official journal of the National Kidney Foundation,
John K Leypoldt
January 1989, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis,
Copied contents to your clipboard!