Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. 2001

G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
Department of Pharmaceutical Biology, University Centre for Pharmacy, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.

Cell-suspension cultures of Linum flavum L. (Linaceae) synthesize and accumulate aryltetrahydronaphthalene lignans with 6-methoxypodophyllotoxin as the main component. The experimental data indicate that the biosynthesis of 6-methoxypodophyllotoxin occurs via deoxypodophyllotoxin, beta-peltatin, and beta-peltatin-A methyl ether. The enzyme catalyzing the introduction of the hydroxyl group in position 6 is deoxypodophyllotoxin 6-hydroxylase (DOP6H). The enzyme was shown to be a cytochrome P450-dependent monooxygenase by blue-light reversion of carbon monoxide inhibition and inhibition by cytochrome c. DOP6H is a membrane-bound microsomal enzyme with a pH optimum of 7.6 and a temperature optimum of 26 degrees C. Deoxypodophyllotoxin is specifically accepted with an apparent Km of 20 microM and a saturation concentration of 200 microM; 4'-demethyldeoxypodophyllotoxin is the only other tested substrate accepted for hydroxylation. DOP6H predominantly accepts NADPH as electron donor; NADH can only sustain low hydroxylation activities. A synergistic effect of NADPH and NADH is not observed. The enzyme is saturated around 250 microM NADPH; the apparent Km for this substrate is 36 microM.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011034 Podophyllotoxin A lignan (LIGNANS) found in PODOPHYLLIN resin from the roots of PODOPHYLLUM plants. It is a potent spindle poison, toxic if taken internally, and has been used as a cathartic. It is very irritating to skin and mucous membranes, has keratolytic actions, has been used to treat warts and keratoses, and may have antineoplastic properties, as do some of its congeners and derivatives. Epipodophyllotoxin,CPH86,Condyline,Condylox,Podocon-25,Podofilm,Podofilox,Podophyllotoxin, (5R-(5 alpha,5a alpha,8a alpha,9 alpha))-Isomer,Podophyllotoxin, (5R-(5 alpha,5a alpha,8a alpha,9 beta))-Isomer,Podophyllotoxin, (5R-(5 alpha,5a alpha,8a beta,9 alpha))-Isomer,Podophyllotoxin, (5R-(5 alpha,5a beta,8a alpha,9 beta))-Isomer,Wartec,Warticon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004365 Drugs, Chinese Herbal Chinese herbal or plant extracts which are used as drugs to treat diseases or promote general well-being. The concept does not include synthesized compounds manufactured in China. Chinese Herbal Drugs,Plant Extracts, Chinese,Chinese Drugs, Plant,Chinese Plant Extracts,Extracts, Chinese Plant,Herbal Drugs, Chinese
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
January 2007, Phytochemistry,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
August 2003, Planta medica,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
November 2001, Proceedings of the National Academy of Sciences of the United States of America,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
May 2007, Phytochemistry,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
July 1995, Molecular & general genetics : MGG,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
November 1998, Plant physiology,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
March 2018, International journal of molecular sciences,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
March 2007, Eukaryotic cell,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
October 2006, Planta medica,
G A Molog, and U Empt, and S Kuhlmann, and W van Uden, and N Pras, and A W Alfermann, and M Petersen
January 2005, Fitoterapia,
Copied contents to your clipboard!