Altered promoter selection by a novel form of Bacillus subtilis RNA polymerase. 1979

J A Jaehning, and J L Wiggs, and M J Chamberlin

Bacillus subtilis RNA polymerase holoenzyme prepared by several standard methods utilizes bacteriophage T7 DeltaD111 DNA as an efficient template. The major RNA products are specific transcripts from T7 promoters A(1) and C; these promoters are also efficiently utilized by RNA polymerases purified from a wide range of other bacterial species [Wiggs, J., Bush, J. & Chamberlin, M. (1979) Cell 16, 97-109]. In contrast, B. subtilis RNA polymerase preparations purified by a modification of the method of Burgess and Jendrisak (designated fraction 5) utilize T7 DeltaD111 promoters A(1) and C and an additional promoter site, J, which has been located at 90.6% on the standard T7 physical map. This promoter is not used by B. subtilis core RNA polymerase or by RNA polymerase from any other bacterial species we have tested. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of fraction 5 RNA polymerase shows that it contains B. subtilis components sigma and delta and a polypeptide of M(r) 92,000 in addition to the B. subtilis beta, beta', and alpha subunits. Chromatography of fraction 5 on single-stranded DNA-cellulose gives an enzyme fraction, Bs I, that is indistinguishable from B. subtilis RNA polymerase holoenzyme both in its peptide composition (betabeta'alpha(2)sigma) and in the selective transcription of only T7 RNAs A(1) and C. Chromatography of fraction 5 on phosphocellulose yields an enzyme fraction, Bs II, devoid of sigma subunit but containing the M(r) 92,000 peptide and traces of delta. This fraction synthesizes predominantly T7 J RNA in vitro together with traces of T7 A(1) and C RNAs. Hence, B. subtilis RNA polymerase fraction Bs II appears to contain a form of RNA polymerase that can transcribe selectively without detectable amounts of B. subtilis sigma subunit and that utilizes a promoter site not used by other known bacterial RNA polymerases. The structural basis for this specificity is not yet known.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J A Jaehning, and J L Wiggs, and M J Chamberlin
January 1985, Gene,
J A Jaehning, and J L Wiggs, and M J Chamberlin
January 1980, Molecular & general genetics : MGG,
J A Jaehning, and J L Wiggs, and M J Chamberlin
November 1981, Nucleic acids research,
J A Jaehning, and J L Wiggs, and M J Chamberlin
May 1984, Journal of molecular biology,
J A Jaehning, and J L Wiggs, and M J Chamberlin
January 1986, Gene,
J A Jaehning, and J L Wiggs, and M J Chamberlin
December 1982, Journal of molecular biology,
J A Jaehning, and J L Wiggs, and M J Chamberlin
November 1990, Gene,
J A Jaehning, and J L Wiggs, and M J Chamberlin
July 1981, The Journal of biological chemistry,
J A Jaehning, and J L Wiggs, and M J Chamberlin
April 1988, Journal of bacteriology,
J A Jaehning, and J L Wiggs, and M J Chamberlin
December 1980, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!