Formation of cell wall polymers by reverting protoplasts of Bacillus licheniformis. 1975

T S Elliott, and J B Ward, and H J Rogers

The biosynthesis of peptidoglycan and teichoic acid by reverting protoplasts of Bacillus licheniformis 6346 His-, in cubated at 35 C on medium containing 2.5% agar, is detectable after 40 min. The amount of N-acetyl-[1-14C]glucosamine incorporated into peptidoglycan and teichoic acid on continued incubation doubles at the same rate as the incorporation of [3H]tryptophan into protein. At the early stages of reversion the average glycan chain length, measured by the ratio of free reducing groups of muramic acid and glucosamine to total muramic acid present, is very short. As reversion proceeds, the average chain length increases to a value similar to the found in the wall of the parent bacillus. The extent of cross-linkage found in the peptide side chains of the peptidoglycan also increases as reversion proceeds. At the completion of reversion the wall material synthesized has similar characteristics to those of the walls of the parent bacilli, containing peptidoglycan and teichoic and teichuronic acids in about the same proportions. Soluble peptidoglycan can be isolated from the reversion medium, amounting to 30% of the total formed after 3 h of incubation and 8% after 12 h. This amount was reduced by the presence in the medium of the walls of an autolysin-deficient mutant; they were not formed at all by reverting protoplasts of the autolysin-deficient mutant itself. Analysis of the soluble material provided additional evidence for their being autolytic products rather than small unchanged molecules. When protoplasts were incubated on medium containing only 0.8% agar, 53 to 67% of the peptidoglycan formed after 3 h of incubation was soluble, and 21% after 12 h. Fibers that appeared to be sheared from the protoplasts at intermediate stages of reversion on medium containing 2.5% agar were similar in composition to the bacillary walls.

UI MeSH Term Description Entries
D009112 Muramic Acids Compounds consisting of glucosamine and lactate joined by an ether linkage. They occur naturally as N-acetyl derivatives in peptidoglycan, the characteristic polysaccharide composing bacterial cell walls. (From Dorland, 28th ed) Muramic Acid,Acid, Muramic,Acids, Muramic
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D010758 Phosphorus A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions. Black Phosphorus,Phosphorus-31,Red Phosphorus,White Phosphorus,Yellow Phosphorus,Phosphorus 31,Phosphorus, Black,Phosphorus, Red,Phosphorus, White,Phosphorus, Yellow
D011523 Protoplasts The protoplasm and plasma membrane of plant, fungal, bacterial or archaeon cells without the CELL WALL. Protoplast
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D003960 Diaminopimelic Acid A diamino derivative of heptanedioic acid with amino groups at C-2 and C-6 and the general formula (COOH)CH(NH2)CH2CH2CH2CH(NH2)(COOH). 2,6-Diaminopimelic Acid,2,6 Diaminopimelic Acid,Acid, 2,6-Diaminopimelic,Acid, Diaminopimelic
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006128 Growth Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine

Related Publications

T S Elliott, and J B Ward, and H J Rogers
June 1961, Journal of bacteriology,
T S Elliott, and J B Ward, and H J Rogers
January 1974, Journal of cell science,
T S Elliott, and J B Ward, and H J Rogers
March 1971, European journal of biochemistry,
T S Elliott, and J B Ward, and H J Rogers
October 1960, Journal of bacteriology,
T S Elliott, and J B Ward, and H J Rogers
February 1969, Journal of bacteriology,
T S Elliott, and J B Ward, and H J Rogers
May 1971, Journal of bacteriology,
T S Elliott, and J B Ward, and H J Rogers
May 1971, Journal of bacteriology,
T S Elliott, and J B Ward, and H J Rogers
April 1984, Applied and environmental microbiology,
T S Elliott, and J B Ward, and H J Rogers
October 1973, Journal of bacteriology,
Copied contents to your clipboard!