Binding of nonsubstrate ligands to the glutathione S-transferases. 1975

J N Ketley, and W H Habig, and W B Jakoby

Fluorescence spectroscopy and inhibition kinetics were used to quantitate the affinity of nonsubstrate ligands for the rat liver glutathione S-transferases AA, A, B, and C in the presence of glutahione. The dissociation constants KD, for ligands such as bilirubin, indocyanine green, and hematin were determined by measuring the decrease in the intrinsic fluorescence of the proteins attendant on the addition of ligand. A second technique, used for compounds which absorb strongly at the excitation maxima of tryptophan, was to utilize 8-anilinonaphthalen sulfonate in the formation of protein complex fluorescing at a higher wavelength. The quenching of this complex allowed the determination of the dissociation constants for ligands such as 3,6-dibromosulfophthalein and cephalothin. These data indicate that all four proteins bind these ligands but do so with different affinities. The bilirubin-induced decrease in fluorescence was used to estimate the stoichiometry of binding as 1.2 mol of bilirubin bound/mol of transferase B and 0.7 mol/mol of transferase C. All of the ligands examine are inhibitors of catalytic activity, as tested in a standard assay with GSH and 1-chloro-2,4-dinitrobenzene as substrates. From these studies we conclude that these proteins have a broad specificity not only for their substrates, but for the binding of nonsubstrate ligands as well.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000817 Anilino Naphthalenesulfonates A class of organic compounds which contain an anilino (phenylamino) group linked to a salt or ester of naphthalenesulfonic acid. They are frequently used as fluorescent dyes and sulfhydryl reagents. Naphthalenesulfonates, Anilino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J N Ketley, and W H Habig, and W B Jakoby
April 1988, Toxicology and applied pharmacology,
J N Ketley, and W H Habig, and W B Jakoby
April 1986, The Journal of biological chemistry,
J N Ketley, and W H Habig, and W B Jakoby
January 1987, Hepatology (Baltimore, Md.),
J N Ketley, and W H Habig, and W B Jakoby
December 1981, The Japanese journal of experimental medicine,
J N Ketley, and W H Habig, and W B Jakoby
November 1980, Chemico-biological interactions,
J N Ketley, and W H Habig, and W B Jakoby
September 1981, Research communications in chemical pathology and pharmacology,
J N Ketley, and W H Habig, and W B Jakoby
April 1990, Biochemical Society transactions,
J N Ketley, and W H Habig, and W B Jakoby
January 1996, Cancer treatment and research,
J N Ketley, and W H Habig, and W B Jakoby
June 1994, Gan to kagaku ryoho. Cancer & chemotherapy,
J N Ketley, and W H Habig, and W B Jakoby
May 1995, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!