Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. 2002

Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
Fujisawa Healthcare, Inc., Deerfield, Illinois 60015-2548, USA. ihor_bekersky@fujisawa.com

Unilamellar liposomal amphotericin B (AmBisome) (liposomal AMB) reduces the toxicity of this antifungal drug. The unique composition of liposomal AMB stabilizes the liposomes, producing higher sustained drug levels in plasma and reducing renal and hepatic excretion. When liposomes release their drug payload, unbound, protein-bound, and liposomal drug pools may exist simultaneously in the body. To determine the amounts of drug in these pools, we developed a procedure to measure unbound AMB in human plasma by ultrafiltration and then used it to characterize AMB binding in vitro and to assess the pharmacokinetics of nonliposomal pools of AMB in a phase IV study of liposomal AMB and AMB deoxycholate in healthy subjects. We confirmed that AMB is highly bound (>95%) in human plasma and showed that both human serum albumin and alpha(1)-acid glycoprotein contribute to this binding. AMB binding exhibited an unusual concentration dependence in plasma: the percentage of bound drug increased as the AMB concentration increased. This was attributed to the low solubility of AMB in plasma, which limits the unbound drug concentration to <1 microg/ml. Subjects given 2 mg of liposomal AMB/kg of body weight had lower exposures (as measured by the maximum concentration of drug in serum and the area under the concentration-time curve) to both unbound and nonliposomal drug than those receiving 0.6 mg of AMB deoxycholate/kg. Most of the AMB in plasma remained liposome associated (97% at 4 h, 55% at 168 h) after liposomal AMB administration, so that unbound drug concentrations remained at <25 ng/ml in all liposomal AMB-treated subjects. Although liposomal AMB markedly reduces the total urinary and fecal recoveries of AMB, urinary and fecal clearances based on unbound AMB were similar (94 to 121 ml h(-1) kg(-1)) for both formulations. Unbound drug urinary clearances were equal to the glomerular filtration rate, and tubular transit rates were <16% of the urinary excretion rate, suggesting that net filtration of unbound drug, with little secretion or reabsorption, is the mechanism of renal clearance for both conventional and liposomal AMB in humans. Unbound drug fecal clearances were also similar for the two formulations. Thus, liposomal AMB increases total AMB concentrations while decreasing unbound AMB concentrations in plasma as a result of sequestration of the drug in long-circulating liposomes.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D003956 Dialysis A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Dialyses
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000666 Amphotericin B Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. Amphocil,Amphotericin,Amphotericin B Cholesterol Dispersion,Amphotericin B Colloidal Dispersion,Fungizone

Related Publications

Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
January 1994, Bone marrow transplantation,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
May 1994, The Journal of infection,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
November 1993, Drug and therapeutics bulletin,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
June 1997, Antimicrobial agents and chemotherapy,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
November 2015, The Cochrane database of systematic reviews,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
March 2010, Medical mycology,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
August 2002, Antimicrobial agents and chemotherapy,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
May 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
July 1998, Journal of clinical pharmacology,
Ihor Bekersky, and Robert M Fielding, and Dawna E Dressler, and Jean W Lee, and Donald N Buell, and Thomas J Walsh
February 2005, Journal of chemotherapy (Florence, Italy),
Copied contents to your clipboard!