Sublethal stress in Escherichia coli: a function of salinity. 1979

I C Anderson, and M Rhodes, and H Kator

Sublethal stress in Escherichia coli was detected in various test media after exposure (in vitro) to seawater of various salinites. Stress was measured with an electrochemical detection technique and a beta-galactosidase assay. Test media included EC medium, medium A-1, and tryptic soy broth modified to contain lactose for beta-galactosidase assay experiments. Stress was defined as the difference between a predicted electrochemical response time calculated for unstarved cells from a standard curve and the observed electrochemical response time for cells starved in seawater. The higher the salinity, the greater the stress for all test media examined. Stress was most pronounced in EC and was attributed primarily to initial die-off of starved cells exposed to the test medium at the elevated temperature of 44.5 degrees C. Lag time and growth rates in test media were not significantly affected by salinity. beta-Galactosidase specific activity, assayed in starved cells after transfer to an induction medium at 44.5 degrees C for 150 min, was inversely related to the salinity of the starved cell suspension. The consequences of these observations with respect to coliform enumeration methods are discussed.

UI MeSH Term Description Entries
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

I C Anderson, and M Rhodes, and H Kator
June 2001, Journal of food protection,
I C Anderson, and M Rhodes, and H Kator
December 1992, The Journal of applied bacteriology,
I C Anderson, and M Rhodes, and H Kator
December 1981, The American review of respiratory disease,
I C Anderson, and M Rhodes, and H Kator
January 2003, Letters in applied microbiology,
I C Anderson, and M Rhodes, and H Kator
July 2005, Antimicrobial agents and chemotherapy,
I C Anderson, and M Rhodes, and H Kator
February 1979, Applied and environmental microbiology,
I C Anderson, and M Rhodes, and H Kator
September 2016, Evolutionary applications,
I C Anderson, and M Rhodes, and H Kator
March 1981, Applied and environmental microbiology,
Copied contents to your clipboard!