Cre/loxP recombination-activated neuronal markers in mouse neocortex and hippocampus. 2002

Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
Howard Hughes Medical Institute, RIKEN-MIT Neuroscience Research Center, Departments of Biology, and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

A new strategy for visualizing neuronal cell morphology of mouse brain based on Cre/loxP recombination-activated gene expression is described. A "reporter" transgenic line was generated which expressed a fusion gene encoding a dendrite-targeted green fluorescent protein (MAP2-GFP) upon deletion of a transcription/translation STOP (transcription and translation stop signal) cassette. Cre transgenic "deleter" lines were established that activated reporter gene expression at various frequencies in pyramidal neurons in the forebrain. A deleter line was identified which activated a MAP2-GFP reporter gene at very low frequency (less than 0.1% of pyramidal neurons) and allowed the visualization of dendritic structures of individual neocortical and hippocampal pyramidal neurons. In addition, vertical "columns" of pyramidal neurons in the neocortex were labeled in these mice. In a second deleter line, a MAP2-GFP reporter gene was selectively activated in pyramidal neurons of the CA-1 subregion of the hippocampus in young mice. With its combinatorial property, this binary recombination-activated neuronal marker system should facilitate the study of detailed morphology, connectivity, and plasticity of defined classes of live neurons in vitro and in vivo.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune

Related Publications

Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
January 2007, Nephron. Experimental nephrology,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
October 2005, Transgenic research,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
January 2002, Nature genetics,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
March 2016, Genesis (New York, N.Y. : 2000),
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
January 2002, Methods in molecular biology (Clifton, N.J.),
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
September 2013, Virus research,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
March 2017, Current protocols in mouse biology,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
December 1996, International journal of experimental pathology,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
July 2004, Biochemical and biophysical research communications,
Z Josh Huang, and Wenjiang Yu, and Chanel Lovett, and Susumu Tonegawa
April 2008, Transgenic research,
Copied contents to your clipboard!