Ultrastructural development of first- to second-generation merozoites in Eimeria contorta Haberkorn, 1971. 1975

B E Müller

The development of first-generation merozoites to second-generation schizonts and merozoites of Eimeria contorta in one of its natural hosts, the mouse, was investigated with the electron microscope. Merozoites inside a host cell show a marked U-shape and a degeneration of the inner-pellicular membrane complex prior to transformation into schizonts. These processes closely resemble those seen in transforming sporozoites. In young schizonts with about 3-5 nuclei, the Golgi-adjuncts (structures of unknown function) form a large interconnected network. Nuclear divisions in growing schizonts involve the formation of a centrocône, which develops in a pocket-like indentation of the nuclear envelope. At least one centriole is present immediately adjacent to this indentation. In a later stage, the centrocône forms a conical nuclear protrusion directed towards a merozoite-anlage. This developing merozoite contains anlagen of a conoid, of rhoptries, and of micronemes and a refractile body in addition to the nucleus, centrioles, and a Golgi-adjunct. The merozoite-anlage is limited by a triple unit membrane complex. Schizonts give rise to 8-15 second-generation merozoites. Interesting features of these merozoites are the high number of micronemes, the finding of one single large mitochondrion per merozoite, and the occurrence of 26 subpellicular microtubules, i.e. the same number as in sporozoites of E. contorta. At the end of their development, merozoites come into direct contact with the host cell cytoplasm as the parasitophorous vacuole breaks down.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003048 Coccidiosis Protozoan infection found in animals and man. It is caused by several different genera of COCCIDIA. Besnoitiasis,Besnoitiosis,Besnoitiases,Besnoitioses,Coccidioses
D004539 Eimeria A genus of protozoan parasites of the subclass COCCIDIA. Various species are parasitic in the epithelial cells of the liver and intestines of man and other animals. Eimerias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

B E Müller
January 1979, Canadian journal of zoology,
B E Müller
January 1974, Zeitschrift fur Parasitenkunde (Berlin, Germany),
B E Müller
June 1966, The Journal of parasitology,
B E Müller
March 2019, Molecular and biochemical parasitology,
Copied contents to your clipboard!