DNA methylation, imprinting and cancer. 2002

Christoph Plass, and Paul D Soloway
Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA. plass-1@medctr.osu.edu

It is well known that a variety of genetic changes influence the development and progression of cancer. These changes may result from inherited or spontaneous mutations that are not corrected by repair mechanisms prior to DNA replication. It is increasingly clear that so called epigenetic effects that do not affect the primary sequence of the genome also play an important role in tumorigenesis. This was supported initially by observations that cancer genomes undergo changes in their methylation state and that control of parental allele-specific methylation and expression of imprinted loci is lost in several cancers. Many loci acquiring aberrant methylation in cancers have since been identified and shown to be silenced by DNA methylation. In many cases, this mechanism of silencing inactivates tumour suppressors as effectively as frank mutation and is one of the cancer-predisposing hits described in Knudson's two hit hypothesis. In contrast to mutations which are essentially irreversible, methylation changes are reversible, raising the possibility of developing therapeutics based on restoring the normal methylation state to cancer-associated genes. Development of such therapeutics will require identifying loci undergoing methylation changes in cancer, understanding how their methylation influences tumorigenesis and identifying the mechanisms regulating the methylation state of the genome. The purpose of this review is to summarise what is known about these issues.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D018392 Genomic Imprinting The variable phenotypic expression of a GENE depending on whether it is of paternal or maternal origin, which is a function of the DNA METHYLATION pattern. Imprinted regions are observed to be more methylated and less transcriptionally active. (Segen, Dictionary of Modern Medicine, 1992) Genetic Imprinting,Parental Imprinting,Imprinting, Genetic,Imprinting, Genomic,Imprinting, Parental
D018899 CpG Islands Areas of increased density of the dinucleotide sequence cytosine--phosphate diester--guanine. They form stretches of DNA several hundred to several thousand base pairs long. In humans there are about 45,000 CpG islands, mostly found at the 5' ends of genes. They are unmethylated except for those on the inactive X chromosome and some associated with imprinted genes. CpG Clusters,CpG-Rich Islands,Cluster, CpG,Clusters, CpG,CpG Cluster,CpG Island,CpG Rich Islands,CpG-Rich Island,Island, CpG,Island, CpG-Rich,Islands, CpG,Islands, CpG-Rich
D019175 DNA Methylation Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor. DNA Methylations,Methylation, DNA,Methylations, DNA

Related Publications

Christoph Plass, and Paul D Soloway
May 1994, Journal of the National Cancer Institute,
Christoph Plass, and Paul D Soloway
January 2000, Current topics in microbiology and immunology,
Christoph Plass, and Paul D Soloway
January 1995, Journal of the National Cancer Institute. Monographs,
Christoph Plass, and Paul D Soloway
May 1994, Cell,
Christoph Plass, and Paul D Soloway
August 1997, Trends in genetics : TIG,
Christoph Plass, and Paul D Soloway
April 1997, Mutation research,
Christoph Plass, and Paul D Soloway
October 2002, Seminars in cancer biology,
Christoph Plass, and Paul D Soloway
April 1998, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics,
Christoph Plass, and Paul D Soloway
January 1993, Cold Spring Harbor symposia on quantitative biology,
Christoph Plass, and Paul D Soloway
January 1993, EXS,
Copied contents to your clipboard!