Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. 2002

Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
Institut für Transplantationsdiagnostik und Zelltherapeutika, Heinrich Heine Universität Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany. Edgar.Grinstein@itz.uni-duesseldorf.de

Sp1 binding sites have been identified in enhancer/promoter regions of several growth and cell cycle regulated genes, and it has been shown that Sp1 is increasingly phosphorylated in G1 phase of the cell cycle. Interactions of Sp1 with proteins involved in control of cell cycle and tumor formation have been reported. Here we show that expression of Sp1 protein predominates in the G1 phase of the cell cycle in epithelial cells. This is achieved by proteasome-dependent degradation. Inhibition of endogeneous Sp1 activity by a dominant-negative Sp1 mutant was associated with a cell cycle arrest in G1 phase, a strongly reduced expression of cyclin D1, the EGF-receptor and increased levels of p27Kip1. We have thus identified Sp1 as an important regulator of the cell cycle in G1 phase.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
March 2001, DNA and cell biology,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
April 2004, Gene,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
June 2020, BMC molecular and cell biology,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
February 2009, Cell cycle (Georgetown, Tex.),
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
February 1999, The Biochemical journal,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
December 1983, The Biochemical journal,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
January 1989, Advances in prostaglandin, thromboxane, and leukotriene research,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
June 1978, Journal of cellular physiology,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
May 2005, Journal of cancer research and clinical oncology,
Edgar Grinstein, and Franziska Jundt, and Inge Weinert, and Peter Wernet, and Hans-Dieter Royer
April 1996, Molecular and cellular biology,
Copied contents to your clipboard!