Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. 2002

Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
Cardiology Division, Hospital de ClĂ­nicas de Porto Alegre, and Department of Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

OBJECTIVE In the present study, we evaluated sinus and atrioventricular (AV) node electrophysiology of endurance athletes and untrained individuals before and after autonomic pharmacologic blockade. BACKGROUND Endurance athletes present a higher prevalence of sinus bradycardia and AV conduction abnormalities, as compared with untrained individuals. Previous data from our laboratory suggest that nonautonomic factors may be responsible for the longer AV node refractory period found in well-trained athletes. METHODS Six aerobically trained male athletes and six healthy male individuals with similar ages and normal rest electrocardiograms were studied. Maximal oxygen uptake (O(2)max) was measured by cardiopulmonary testing. The sinus cycle length (SCL), AV conduction intervals, sinus node recovery time (SNRT), Wenckebach cycle (WC) and anterograde effective refractory period (ERP) of the AV node were evaluated by invasive electrophysiologic studies at baseline, after intravenous atropine (0.04 mg/kg) and after addition of intravenous propranolol (0.2 mg/kg). RESULTS Athletes had a significantly higher O(2)max as compared with untrained individuals. The SCL was longer in athletes at baseline, after atropine and after the addition of propranolol for double-autonomic blockade. The mean maximal SNRT/SCL was longer in athletes after atropine and after propranolol. The WC and anterograde ERP of the AV node were longer in athletes at baseline, after atropine and after propranolol. CONCLUSIONS Under double-pharmacologic blockade, we demonstrated that sinus automaticity and AV node conduction changes of endurance athletes are related to intrinsic physiology and not to autonomic influences.

UI MeSH Term Description Entries
D008297 Male Males
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010807 Physical Endurance The time span between the beginning of physical activity by an individual and the termination because of exhaustion. Endurance, Physical,Physical Stamina,Stamina, Physical
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic

Related Publications

Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
January 1996, Romanian journal of internal medicine = Revue roumaine de medecine interne,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
December 1992, Kardiologia polska,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
February 1988, The American journal of cardiology,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
September 2001, Medicine and science in sports and exercise,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
August 1984, The American journal of cardiology,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
April 1987, Circulation,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
December 2001, International journal of sport nutrition and exercise metabolism,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
May 1956, American heart journal,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
December 2023, Journal of clinical medicine,
Ricardo Stein, and Claudio M Medeiros, and Guido A Rosito, and Leandro I Zimerman, and Jorge P Ribeiro
February 1984, The American journal of cardiology,
Copied contents to your clipboard!