Identification of clinical isolates of mycobacteria with gas-liquid chromatography alone. 1979

P A Tisdall, and G D Roberts, and J P Anhalt

Identification of 18 mycobacterial species was performed by analysis of profiles obtained by using gas-liquid chromatography. Organisms were saponified in methanolic NaOH, and the reaction mixture was treated with BF(3) in methanol and extracted with a hexane-chloroform mixture. An identification scheme was developed from 128 stock strains and tested against a collection of 79 clinical isolates. By using gas-liquid chromatographic profiles alone, 58% of specimens were correctly identified to species level, and an additional 41% were correctly identified to a group of two or three organisms. Use in a clinical laboratory over a 2-month period proved chromatography to be as accurate as and more rapid than concurrent biochemical testing. Of 81 isolates tested, 64% were identified to species level by chromatography alone. An additional 35% were differentiated to the same groups of two or three organisms as found in our analysis of stock strains. These groups consisted of: Mycobacterium tuberculosis, M. bovis, and M. xenopi; M. avium complex, M. gastri, and M. scrofulaceum; or M. fortuitum and M. chelonei. Identification to species level from these groups could usually be done by colonial morphology alone and could always be done by the addition of one selected biochemical test. This study demonstrated the practical application of gas-liquid chromatography in the identification of mycobacteria in a clinical laboratory. In particular, all strains of M. gordonae and M. kansasii were identified to species level. M. tuberculosis was definitively identified in 85% of cases. When it could not be definitely identified, the only alternatives were M. bovis and M. xenopi, both of which are rare causes of infection.

UI MeSH Term Description Entries
D009161 Mycobacterium A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts. Mycobacteria
D009164 Mycobacterium Infections Infections with bacteria of the genus MYCOBACTERIUM. Infections, Mycobacterium,Infection, Mycobacterium,Mycobacterium Infection
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D009170 Nontuberculous Mycobacteria So-called atypical species of the genus MYCOBACTERIUM that do not cause tuberculosis. They are also called tuberculoid bacilli, i.e.: M. abscessus, M. buruli, M. chelonae, M. duvalii, M. flavescens, M. fortuitum, M. gilvum, M. gordonae, M. intracellulare (see MYCOBACTERIUM AVIUM COMPLEX;), M. kansasii, M. marinum, M. obuense, M. scrofulaceum, M. szulgai, M. terrae, M. ulcerans, M. xenopi. Atypical Mycobacteria,Mycobacteria, Atypical,Mycobacterium duvalii,Mycobacterium flavescens,Mycobacterium gilvum,Mycobacterium gordonae,Mycobacterium obuense,Mycobacterium szulgai,Mycobacterium terrae,Mycolicibacter terrae,Mycolicibacterium duvalii,Mycolicibacterium flavescens,Mycolicibacterium gilvum,Mycolicibacterium obuense,Tuberculoid Bacillus,Atypical Mycobacterium,Mycobacterium, Atypical,Non-Tuberculous Mycobacteria,Nontuberculous Mycobacterium
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P A Tisdall, and G D Roberts, and J P Anhalt
January 1985, Pathology,
P A Tisdall, and G D Roberts, and J P Anhalt
January 1990, Problemy tuberkuleza,
P A Tisdall, and G D Roberts, and J P Anhalt
January 1977, Acta pathologica et microbiologica Scandinavica. Supplement,
P A Tisdall, and G D Roberts, and J P Anhalt
January 1984, Annals of the New York Academy of Sciences,
P A Tisdall, and G D Roberts, and J P Anhalt
September 1994, European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology,
P A Tisdall, and G D Roberts, and J P Anhalt
April 1983, Zhonghua jie he he hu xi xi ji bing za zhi = Chinese journal of tuberculosis and respiratory diseases,
P A Tisdall, and G D Roberts, and J P Anhalt
April 1996, Journal of clinical microbiology,
P A Tisdall, and G D Roberts, and J P Anhalt
January 2009, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
P A Tisdall, and G D Roberts, and J P Anhalt
November 1991, Journal of clinical microbiology,
P A Tisdall, and G D Roberts, and J P Anhalt
May 1969, The American review of respiratory disease,
Copied contents to your clipboard!