Mutational analysis of the subunit interface of Vibrio harveyi bacterial luciferase. 2002

Jennifer K Inlow, and Thomas O Baldwin
Department of Biochemistry and Molecular Biophysics, The University of Arizona, Tucson, Arizona 85721-0088, USA.

Bacterial luciferase is a heterodimeric (alphabeta) enzyme which catalyzes a light-producing reaction in Vibrio harveyi. In addition to the alphabeta enzyme, the beta subunit can self-associate to form a stable but inactive homodimer [Sinclair, J. F., Ziegler, M. M., and Baldwin, T. O. (1994) Nat. Struct. Biol. 1, 320-326]. The studies reported here were undertaken to explore the role of the subunit interface in the conformational stability of the enzyme. To this end, we constructed four mutant heterodimers in which residues at the subunit interface were changed in an effort to alter the volume of an apparent solvent accessible channel at the interface or to alter H-bonding groups. Equilibrium unfolding data for the heterodimer have been interpreted in terms of a three-state mechanism [Clark, C. A., Sinclair, J. F., and Baldwin, T. O. (1993) J. Biol. Chem. 268, 10773-10779]. However, we found that unfolding for the wild-type and mutant luciferases is better described by a four-state model. This change in the proposed mechanism of unfolding is based on observation of residual structure in the subunits following dissociation of the heterodimeric intermediate. All of the mutants display modest reductions in activity but, surprisingly, no change in the DeltaG2H2O value for subunit dissociation and no measurable change in the equilibrium dissociation constant relative to that of the wild-type heterodimer. However, the DeltaG1H2O value for the formation of the dimeric intermediate that precedes subunit dissociation is reduced for three of the mutants, indicating that mutations at the interface can alter the stability of a region of the alpha subunit that is distant from the interface. We conclude that the interface region communicates with the distal domains of this subunit, probably through the active center region of the enzyme.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014461 Ultracentrifugation Centrifugation with a centrifuge that develops centrifugal fields of more than 100,000 times gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D014733 Vibrio A genus of VIBRIONACEAE, made up of short, slightly curved, motile, gram-negative rods. Various species produce cholera and other gastrointestinal disorders as well as abortion in sheep and cattle. Beneckea
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

Jennifer K Inlow, and Thomas O Baldwin
November 1982, Science (New York, N.Y.),
Jennifer K Inlow, and Thomas O Baldwin
December 1991, Molecular & general genetics : MGG,
Jennifer K Inlow, and Thomas O Baldwin
May 1995, Biochemistry,
Jennifer K Inlow, and Thomas O Baldwin
June 1981, Journal of bacteriology,
Jennifer K Inlow, and Thomas O Baldwin
January 1985, The Journal of biological chemistry,
Copied contents to your clipboard!