Kinetic mechanism of adenine phosphoribosyltransferase from Leishmania donovani. 2002

Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201-3098, USA.

Adenine phosphoribosyltransferase (APRT, EC 2.4.2.7) catalyzes the reversible phosphoribosylation of adenine from alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to form AMP and PP(i). Three-dimensional structures of the dimeric APRT enzyme from Leishmania donovani (LdAPRT) bear many similarities to other members of the type 1 phosphoribosyltransferase family but do not reveal the structural basis for catalysis (Phillips, C. L., Ullman, B., Brennan, R. G., and Hill, C. P. (1999) EMBO J. 18, 3533-3545). To address this issue, a steady state and transient kinetic analysis of the enzyme was performed in order to determine the catalytic mechanism. Initial velocity and product inhibition studies indicated that LdAPRT follows an ordered sequential mechanism in which PRPP is the first substrate to bind and AMP is the last product to leave. This mechanistic model was substantiated by equilibrium isotope exchange and fluorescence binding studies, which provided dissociation constants for the LdAPRT-PRPP and LdAPRT-AMP binary complexes. Pre-steady-state kinetic analysis of the forward reaction revealed a burst in product formation indicating that phosphoribosyl transfer proceeds rapidly relative to some rate-limiting product release event. Transient fluorescence competition experiments enabled measurement of rates of binary complex dissociation that implicated AMP release as rate-limiting for the forward reaction. Kinetics of product ternary complex formation were evaluated using the fluorophore formycin AMP and established rate constants for pyrophosphate binding to the LdAPRT-formycin AMP complex. Taken together, these data enabled the complete formulation of an ordered bi-bi kinetic mechanism for LdAPRT in which all of the rate constants were either measured or calculated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007893 Leishmania donovani A parasitic hemoflagellate of the subgenus Leishmania leishmania that infects man and animals and causes visceral leishmaniasis (LEISHMANIASIS, VISCERAL). The sandfly genera Phlebotomus and Lutzomyia are the vectors. Leishmania (Leishmania) donovani,Leishmania leishmania donovani,Leishmania donovanus,Leishmania leishmania donovanus,donovani, Leishmania leishmania,donovanus, Leishmania,donovanus, Leishmania leishmania,leishmania donovanus, Leishmania
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000228 Adenine Phosphoribosyltransferase An enzyme catalyzing the formation of AMP from adenine and phosphoribosylpyrophosphate. It can act as a salvage enzyme for recycling of adenine into nucleic acids. EC 2.4.2.7. AMP Pyrophosphorylase,Transphosphoribosidase,APRTase,Phosphoribosyltransferase, Adenine,Pyrophosphorylase, AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
January 1986, Advances in experimental medicine and biology,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
July 1999, The EMBO journal,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
October 1995, Molecular and biochemical parasitology,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
March 1989, Molecular and biochemical parasitology,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
December 1984, The Journal of biological chemistry,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
July 1966, The Journal of biological chemistry,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
January 2004, Biochimica et biophysica acta,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
July 1995, Molecular and biochemical parasitology,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
February 1971, Archives of biochemistry and biophysics,
Caleb Bashor, and John M Denu, and Richard G Brennan, and Buddy Ullman
September 1998, Molecular and biochemical parasitology,
Copied contents to your clipboard!