STI571 (imatinib mesylate): the tale of a targeted therapy. 2002

Paul Thambi, and Edward A Sausville
Developmental Therapeutics Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA. Paul.Thambi@nih.gov

STI571 (imatinib mesylate) is an example of the successful development of a targeted agent. Its target is the constitutively active tyrosine kinase (p210bcr-abl) in a hematologic neoplasm, chronic myelogenous leukemia (CML). The results in early clinical trials were remarkable and led to rapid approval by the Food and Drug Administration for clinical use of the STI571 in CML. This article reviews the pre-clinical and clinical development of this agent and also discusses some of the prevailing theories to explain the emerging problem of resistance. Future directions for this drug, possibly directed at other targets, are also discussed.

UI MeSH Term Description Entries
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068877 Imatinib Mesylate A tyrosine kinase inhibitor and ANTINEOPLASTIC AGENT that inhibits the BCR-ABL kinase created by chromosome rearrangements in CHRONIC MYELOID LEUKEMIA and ACUTE LYMPHOBLASTIC LEUKEMIA, as well as PDG-derived tyrosine kinases that are overexpressed in gastrointestinal stromal tumors. Alpha-(4-methyl-1-piperazinyl)-3'-((4-(3-pyridyl)-2-pyrimidinyl)amino)-p-tolu-p-toluidide,CGP 57148,CGP-57148,CGP57148B,Gleevec,Glivec,Imatinib,Imatinib Methanesulfonate,ST 1571,ST1571,STI 571,STI-571,STI571,CGP57148,Mesylate, Imatinib,Methanesulfonate, Imatinib
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001549 Benzamides BENZOIC ACID amides.
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias
D016044 Fusion Proteins, bcr-abl Translation products of a fusion gene derived from CHROMOSOMAL TRANSLOCATION of C-ABL GENES to the genetic locus of the breakpoint cluster region gene on chromosome 22. Several different variants of the bcr-abl fusion proteins occur depending upon the precise location of the chromosomal breakpoint. These variants can be associated with distinct subtypes of leukemias such as PRECURSOR CELL LYMPHOBLASTIC LEUKEMIA-LYMPHOMA; LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE; and NEUTROPHILIC LEUKEMIA, CHRONIC. Oncogene Protein p190(bcr-abl),Oncogene Protein p210(bcr-abl),bcr-abl Fusion Protein,bcr-abl Fusion Proteins,Bcr-Abl Tyrosine Kinase,Oncogene Protein p185(bcr-abl),Oncogene Protein p230(bcr-abl),p185(bcr-abl) Fusion Proteins,p190(bcr-abl) Fusion Proteins,p210(bcr-abl) Fusion Proteins,p230(bcr-abl) Fusion Proteins,Bcr Abl Tyrosine Kinase,Fusion Protein, bcr-abl,Fusion Proteins, bcr abl,Kinase, Bcr-Abl Tyrosine,Protein, bcr-abl Fusion,Tyrosine Kinase, Bcr-Abl,bcr abl Fusion Protein,bcr abl Fusion Proteins

Related Publications

Paul Thambi, and Edward A Sausville
February 2002, The New England journal of medicine,
Paul Thambi, and Edward A Sausville
June 2002, Bulletin du cancer,
Paul Thambi, and Edward A Sausville
October 2002, British journal of haematology,
Paul Thambi, and Edward A Sausville
March 2005, Zhonghua wei chang wai ke za zhi = Chinese journal of gastrointestinal surgery,
Paul Thambi, and Edward A Sausville
May 2004, Leukemia research,
Paul Thambi, and Edward A Sausville
November 2003, Oncology (Williston Park, N.Y.),
Paul Thambi, and Edward A Sausville
July 2002, Nature reviews. Drug discovery,
Paul Thambi, and Edward A Sausville
October 2003, Anti-cancer drugs,
Copied contents to your clipboard!