Regulation of cell migration during tracheal development in Drosophila melanogaster. 2002

Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
Abteilung Zellbiologie, Biozentrum der Universität Basel, Switzerland.

Most of the knowledge concerning the intracellular mechanisms involved in cell locomotion have been obtained from in vitro studies of cells in culture. Many of the concepts derived from these studies have been partially confirmed in in vivo systems but numerous questions regarding the developmental control of cell migration remain to be addressed. Tracheal morphogenesis in Drosophila melanogaster embryos represents an in vivo model system to study the genetic control of cell migration. We review what is known about tracheal development and regulation of tracheal cell migration. We try to link these in vivo studies and the movement of cells over two dimensional substrates and elaborate on important questions which remain to be addressed in the future.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014132 Trachea The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi. Tracheas
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
February 1994, Trends in genetics : TIG,
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
June 1999, Development (Cambridge, England),
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
November 2008, Current biology : CB,
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
January 2014, PloS one,
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
June 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
July 2010, Cell cycle (Georgetown, Tex.),
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
June 2020, Developmental biology,
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
January 1973, Biochemical genetics,
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
December 1998, Development (Cambridge, England),
Valérie Petit, and Carlos Ribeiro, and Andreas Ebner, and Markus Affolter
January 2010, Frontiers of oral biology,
Copied contents to your clipboard!