The alpha7 nicotinic receptors in human fetal brain and spinal cord. 2002

Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
Department of Clinical Neuroscience, Occupational Therapy and Elderly Care Research, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden.

The alpha7 nicotinic acetylcholine receptor subtype is believed to be involved in the regulation of neuronal growth, differentiation and synapse formation during the development of the human brain. In this study the expression of the alpha7 nicotinic acetylcholine receptor was investigated in human fetal brain and spinal cord of 5-11 weeks gestational age. Both the specific binding of [125I]alpha-bungarotoxin to prenatal brain membranes and the expression of alpha7 mRNA were significantly higher in the pons, medulla oblongata, mesencephalon and spinal cord of 9-11 weeks gestational age compared with cerebellum, cortex and subcortical forebrain. A significant positive correlation between gestational age and the expression of alpha7 mRNA was observed in all brain regions except cortex. A positive correlation was also observed between the gestational age and the [125I]alpha-bungarotoxin binding in the pons, medulla oblongata, mesencephalon, and cerebellum. Consequently, a significant relationship between the alpha7 mRNA levels and the binding sites for [125I]alpha-bungarotoxin was found in the fetal brain. The increasing levels of the alpha7 nicotinic acetylcholine receptor during the first trimester support the important role of nAChRs for the development of the central nervous system.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
October 2003, The Journal of comparative neurology,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
November 2005, European journal of pharmacology,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
April 2011, Arteriosclerosis, thrombosis, and vascular biology,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
June 1998, Brain research. Developmental brain research,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
January 2003, The Journal of comparative neurology,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
May 2006, The European journal of neuroscience,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
July 1997, FEBS letters,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
August 1988, Neurosurgery,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
December 2001, Molecular pharmacology,
Lena Falk, and Agneta Nordberg, and Ake Seiger, and Anders Kjaeldgaard, and Ewa Hellström-Lindahl
August 2006, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!