On a nonelementary progress curve equation and its application in enzyme kinetics. 2002

Marko Golicnik
Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia. golicnik@ibmi.mf.uni-lj.si

The analytical equation describing progress curves of an enzyme catalyzed reaction acting upon the Michaelis-Menten mechanism has been known for the case in which only the free enzyme incurs a loss of its activity, either spontaneously or as a result of an irreversible inhibitor action. The solution of differential equations which defines the rates of enzyme inactivation and substrate utilization is expressed by a nonelementary function in equation of an implicit type that precludes direct calculation of the extent of reaction at any time. Previously, the implicit equations have been rearranged to the alternative formulas and solved by the Newton-Raphson method, but this procedure may fail when used upon the presented equation. For this reason the other root-finding numerical method was applied, and the enzyme kinetic parameters of such numerically solved implicit equation for the reaction mechanism of irreversibly inhibited acetylcholinesterase were fitted to the experimental data by a nonlinear regression computer program.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
Copied contents to your clipboard!