Serotonin nerve terminals in adult rat neocortex. 1975

L Descarries, and A Beaudet, and K C Watkins

Axonal processes which take up and retain exogenous tritiated serotonin ([3H]5-HT) have been demonstrated in the fronto-parietal cortex of adult rats, by means of high resolution radioautography. Prolonged topical superfusion with relatively high concentrations of ([3H]5-HT allowed detection of a maximal number of axonal reactions in the upper 3 layers of cortex. Comparison of results obtained from normal rats and animals pretreated with 6-hydroxydopamine or bearing midbrain raphe lesions established the specificity of this labeling. All reactive axons seemed to arise from the serotonin nerve cell bodies in groups B7 and B8 of Dahlström and Fuxe15. In electron microscope radioautographs, the serotonin fibers appeared as tenuous, naked axonal processes (0.1-0.5 mum in diameter) exhibiting small enlargements (0.7 mum in mean diameter) spaced at frequent intervals (1-3 mum). These boutons contained occasional mitochondria, small, round, agranular 'synaptic' vesicles and large granular vesicles. With axons, [3H]5-HT was concentrated in the boutons, and to a much lesser extent in connecting segments. This reactive pattern resembled that revealed by the fluorescence technique for endogenous serotonin. Preferential accumulations of the tracer by mitochondria and vesicular organelles indicated that these elements could sequester exogenous serotonin. Large granular vesicles were not necessarily visible in random thin sections of the labeled varicosities, and thus could not serve as the unique criterion for electron microscopic identification of 5-HT terminals. Moreover, these organelles are known to be present in other types of nerve endings. Topometric analysis of serial thin sections nevertheless demonstrated that large granular vesicles were potentially detectable in every 5-HT containing bouton, and also enabled extrapolation of their average number at 7 per varicosity. This low number makes it unlikely that large granular vesicles primarily represent storage sites. They could rather serve as a carrier for particle-bound enzymes essential to the local metabolism of serotonin or its precursors. A very small fraction of the serotonin varicosities exhibited the membrane differentiations of typical synaptic terminals. Extensive sampling in serial thin sections revealed junctional complexes in only 5% of labeled boutons, as opposed to 50% of unlabeled nerve endings in the surrounding neuropil. The data do not preclude the possibility that other monoaminergic neurons also share similar characteristics. It is probable that endogenous serotonin can be liberated from all axonal varicosities including those lacking strictu senso synaptic relationships. The overall configuration and ultrastructural features of cortical serotonin fibers suggest intrinsic dynamic properties which could assume particular significance in terms of function, plasticity and regrowth.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

L Descarries, and A Beaudet, and K C Watkins
April 1978, Brain research,
L Descarries, and A Beaudet, and K C Watkins
March 1981, Brain research,
L Descarries, and A Beaudet, and K C Watkins
August 1970, Experimental neurology,
L Descarries, and A Beaudet, and K C Watkins
November 2008, FEBS letters,
L Descarries, and A Beaudet, and K C Watkins
January 1990, Neurochemistry international,
L Descarries, and A Beaudet, and K C Watkins
September 1985, Science (New York, N.Y.),
L Descarries, and A Beaudet, and K C Watkins
November 1989, The Journal of comparative neurology,
Copied contents to your clipboard!