Newer immunosuppressive drugs: their potential role in rheumatoid arthritis therapy. 2002

Alexandros A Drosos
Section of Rheumatology, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece. adrosos@cc.uoi.gr

Rheumatoid arthritis (RA) is a chronic immune-mediated disease characterised by chronic synovitis, which leads to cartilage damage and joint destruction. It is generally a progressive disease with radiographic evidence of joint damage, functional status decline and premature mortality. Proinflammatory cytokines, such as interleukin 1 and tumour necrosis factor alpha, play an important role in maintaining the chronicity of RA and mediating tissue damage. New approaches in the therapy of RA with anticytokine biological agents, which neutralise or block cytokines or their receptors, are now the first generation antirheumatic drugs in clinical practice. A better understanding of the signal transduction systems and gene regulation by transcription factors involved in cytokine production has opened the way for the discovery of novel therapeutic compounds useful in treating patients with RA. Overactivation of selective kinases or aberrant function of downstream transcription factors could help convert a normal immune response to a chronic disease state. This provides a unique opportunity for novel therapeutic interventions, since specific signal transduction or transcription factor targets might interrupt the perpetuation mechanisms in RA. The availability of potent and selective p38 mitogen activated protein kinase inhibitors provide a means in further dissecting the pathways implicated in cytokine production, which in turn maintain the chronicity of RA. Many studies conclude that these compounds are very useful in the treatment of chronic synovitis and therefore are very promising for RA treatment.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D009173 Mycophenolic Acid Compound derived from Penicillium stoloniferum and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase (IMP DEHYDROGENASE). Mycophenolic acid exerts selective effects on the immune system in which it prevents the proliferation of T-CELLS, LYMPHOCYTES, and the formation of antibodies from B-CELLS. It may also inhibit recruitment of LEUKOCYTES to sites of INFLAMMATION. Cellcept,Mycophenolate Mofetil,Mycophenolate Mofetil Hydrochloride,Mycophenolate Sodium,Mycophenolic Acid Morpholinoethyl Ester,Myfortic,RS 61443,RS-61443,Sodium Mycophenolate,Mofetil Hydrochloride, Mycophenolate,Mofetil, Mycophenolate,Mycophenolate, Sodium,RS61443
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077339 Leflunomide An isoxazole derivative that inhibits dihydroorotate dehydrogenase, the fourth enzyme in the pyrimidine biosynthetic pathway. It is used an immunosuppressive agent in the treatment of RHEUMATOID ARTHRITIS and PSORIATIC ARTHRITIS. Arava,HWA 486,HWA-486,N-(4-Trifluoromethyphenyl)-5-methylisoxazole-4-carboxamide,SU101,HWA486
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001172 Arthritis, Rheumatoid A chronic systemic disease, primarily of the joints, marked by inflammatory changes in the synovial membranes and articular structures, widespread fibrinoid degeneration of the collagen fibers in mesenchymal tissues, and by atrophy and rarefaction of bony structures. Etiology is unknown, but autoimmune mechanisms have been implicated. Rheumatoid Arthritis
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

Alexandros A Drosos
February 1990, Critical care medicine,
Alexandros A Drosos
July 1969, Annals of internal medicine,
Alexandros A Drosos
February 1971, British medical journal,
Alexandros A Drosos
January 1971, Modern trends in rheumatology,
Alexandros A Drosos
October 1987, Ryumachi. [Rheumatism],
Alexandros A Drosos
September 1971, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
Alexandros A Drosos
January 1988, Acta medica Austriaca,
Alexandros A Drosos
November 2006, Mayo Clinic health letter (English ed.),
Alexandros A Drosos
January 1974, Advances in clinical pharmacology,
Alexandros A Drosos
April 1971, Ugeskrift for laeger,
Copied contents to your clipboard!