Responses of spinothalamic lamina I neurons to maintained noxious mechanical stimulation in the cat. 2002

D Andrew, and A D Craig
Atkinson Pain Research Laboratory, Division of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.

Noxious mechanical stimuli that are maintained for minutes produce a continuous sensation of pain in humans that augments during the stimulus. It has recently been shown with systematic force-controlled stimuli that, while all mechanically responsive nociceptors adapt to these stimuli, the basis for such pain can be ascribed to A-fiber rather than C-fiber nociceptors, based on distinctions in their respective response profiles and stimulus-response functions. The present experiments investigated whether similar distinctions could be made in subsets of nociceptive lamina I spinothalamic tract (STT) neurons using similar maintained stimuli. Twenty-eight lamina I STT neurons in the lumbosacral dorsal horn of barbiturate-anesthetized cats were tested with noxious mechanical stimuli applied with a probe of 0.1 mm(2) contact area at forces of 25, 50, and 100 g for 2 min. The neurons were classified as nociceptive-specific (NS, n = 14) or polymodal nociceptive (HPC, n = 14) based on their responses to quantitative thermal stimuli. The NS neurons had greater responses and showed less adaptation than the HPC neurons in response to these stimuli, and they encoded stimulus intensity better. Comparison of the normalized response profiles of all 28 nociceptive lamina I STT neurons, independent of cell classification, revealed 2 subgroups that differed significantly: "Maintained" cells with responses that remained above 50% of the initial peak rate during stimulation and "Adapting" cells with responses that quickly declined to <50%. The Maintained neurons encoded the intensity of the mechanical stimuli better than the Adapting neurons, based on ratiometric functions. A k-means cluster analysis of all 28 cells distinguished the identical two subgroups. These categories corresponded closely to the NS and HPC categories: Maintained cells were mostly NS neurons (10 NS, 3 HPC), and Adapting cells were mostly HPC neurons (4 NS, 11 HPC). Thus the present data are consistent with the distinctions between A-fiber and C-fiber nociceptors observed previously, because A-fiber nociceptors are the predominant input to NS lamina I STT neurons and C-fiber nociceptors are the predominant input to HPC neurons. These findings support the view that NS, but perhaps not HPC, lamina I STT neurons have a role in the pain caused by maintained mechanical stimuli and contribute to the sensations of "first" pain and "sharpness." Nonetheless, none of the units studied showed increasing responses during the stimuli, suggesting a role for other ascending neurons or forebrain integration in the augmenting pain produced by maintained mechanical stimulation.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013133 Spinothalamic Tracts A bundle of NERVE FIBERS connecting each posterior horn of the spinal cord to the opposite side of the THALAMUS, carrying information about pain, temperature, and touch. It is one of two major routes by which afferent spinal NERVE FIBERS carrying sensations of somaesthesis are transmitted to the THALAMUS. Spinothalamic Tract,Tract, Spinothalamic,Tracts, Spinothalamic

Related Publications

D Andrew, and A D Craig
April 1996, The Journal of comparative neurology,
D Andrew, and A D Craig
August 1985, The Journal of physiology,
D Andrew, and A D Craig
February 1994, Brain research,
D Andrew, and A D Craig
April 2004, Neuroscience letters,
D Andrew, and A D Craig
January 2003, Somatosensory & motor research,
Copied contents to your clipboard!